Macrophages are the major target cell population of the obligate intracellular parasites Leishmania. Although polymorphonuclear neutrophil granulocytes (PMN) are able to internalize Leishmania promastigotes, these cells have not been considered to date as host cells for the parasites, primarily due to their short life span. In vitro coincubation experiments were conducted to investigate whether Leishmania can modify the spontaneous apoptosis of human PMN. Coincubation of PMN with Leishmania major promastigotes resulted in a significant decrease in the ratio of apoptotic neutrophils as detected by morphological analysis of cell nuclei, TUNEL assay, gel electrophoresis of low m.w. DNA fragments, and annexin V staining. The observed antiapoptotic effect was found to be associated with a significant reduction of caspase-3 activity in PMN. The inhibition of PMN apoptosis depended on viable parasites because killed Leishmania or a lysate of the parasites did not have antiapoptotic effect. L. major did not block, but rather delayed the programmed cell death of neutrophils by ∼24 h. The antiapoptotic effect of the parasites could not be transferred by the supernatants, despite secretion of IL-8 by PMN upon coculture with L. major. In vivo, intact parasites were found intracellularly in PMN collected from the skin of mice 3 days after s.c. infection. This finding strongly suggests that infection with Leishmania prolongs the survival time of neutrophils also in vivo. These data indicate that Leishmania induce an increased survival of neutrophil granulocytes both in vitro and in vivo.
IntroductionThe hypoxia-inducible factor 1 (HIF-1) is an ubiquitously expressed transcriptional master regulator of many genes regulating mammalian oxygen homeostasis. 1 Among others, the corresponding gene products are involved in erythropoiesis, iron metabolism, angiogenesis, control of blood flow, glucose uptake and glycolysis, pH regulation, and cell-cycle control. 2 HIF-1 is a ␣ 1  1 heterodimer specifically recognizing the HIF-binding site within cis-regulatory hypoxia response elements. 3 Under normoxic conditions, the von Hippel-Lindau tumor suppressor protein (pVHL) targets the HIF-1␣ subunit for rapid ubiquitination and proteasomal degradation. 4 Binding of the pVHL tumor suppressor protein requires the modification of HIF-1␣ by prolyl-4-hydroxylation at prolines 402 and 564 of human HIF-1␣. [5][6][7][8] A family of 3 oxygen-and iron-dependent prolyl-4-hydroxylases called PHD1, PHD2, PHD3, or HPH3, HPH2, HPH1, respectively, has been shown to hydroxylate HIF␣. 9,10 A fourth member, called PH-4, regulates HIF-1␣ in overexpression conditions only. 11 Thus, limited oxygen supply prevents HIF␣ hydroxylation and degradation. 12 This unusual mechanism of protein regulation provides the basis for the very rapid HIF-1␣ response to hypoxia. 13 In addition to protein stability, oxygen-dependent C-terminal asparagine hydroxylation of HIF-1␣ by factor inhibiting HIF (FIH) prevents transcriptional cofactor recruitment, thereby fine-tuning HIF-1 activity following a further decrease in oxygen availability. 14,15 Among the HIF-1 targets are the genes encoding transferrin, transferrin receptor, heme oxygenase-1, and ceruloplasmin, which coordinately regulate iron metabolism. [16][17][18][19][20] Increased iron uptake, release from the liver, plasma transport, and uptake in the bone marrow are essential to sustain the erythropoietic function of erythropoietin, the prototype HIF-1 target. Ceruloplasmin is a multicopper plasma protein containing ferroxidase activity necessary for Fe 3ϩ saturation of transferrin. 21 Hereditary aceruloplasminemia in humans as well as targeted deletion of the ceruloplasmin gene (Cp) in mice results in iron metabolism disorders characterized by anemia, hepatic iron overload, and neurodegeneration, demonstrating a tight connection between copper and iron metabolism. [22][23][24][25][26] Iron deficiency has been known for more than a decade to induce erythropoietin gene expression and HIF-1␣ protein stabilization. 27 Nowadays, these results are most likely explained by inactivation of the iron-dependent protein hydroxylases PHD1 to 3 and FIH. 12 Iron deficiency also results in mRNA induction of ceruloplasmin by HIF-1-dependent promoter activation and subsequent transcriptional up-regulation of the Cp gene. 20 Materials and methods Cell lines and cell cultureAll cell lines were cultured in Dulbecco modified Eagle medium (high glucose) as described previously. 29 Oxygen partial pressures in the hypoxic workstation (InVivO 2 -400; Ruskinn Technology, Leeds, United Kingdom) or in the incubator (M...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.