Osseointegrated percutaneous implants are a promising prosthetic alternative for a subset of amputees. However, as with all percutaneous implants, they have an increased risk of infection since they breach the skin barrier. Theoretically, host tissues could attach to the metal implant creating a barrier to infection. When compared with smooth surfaces, it is hypothesized that porous surfaces improve the attachment of the host tissues to the implant, and decrease the infection risk. In this study, 4 titanium implants, manufactured with a percutaneous post and a subcutaneous disk, were placed subcutaneously on the dorsum of eight New Zealand White rabbits. Beginning at four weeks post-op, the implants were inoculated weekly with 10 8 CFU Staphylococcus aureus until signs of clinical infection presented. While we were unable to detect a difference in the incidence of infection of the porous metal implants, smooth surface (no porous coating) percutaneous and subcutaneous components had a 7-fold increased risk of infection compared to the implants with a porous coating on one or both components. The porous coated implants displayed excellent tissue ingrowth into the porous structures; whereas, the smooth implants were surrounded with a thick, organized fibrotic capsule that was separated from the implant surface. This study suggests that porous coated metal percutaneous implants are at a significantly lower risk of infection when compared to smooth metal implants. The smooth surface percutaneous implants were inadequate in allowing a long-term seal to develop with the soft tissue, thus increasing vulnerability to the migration of infecting microorganisms.
Epidermal downgrowth, commonly associated with long-term percutaneous implants, weakens the skin-implant seal and greatly increases the vulnerability of the site to infection. To improve the skin attachment and early tissue integration with porous metal percutaneous implants, we evaluated the effect of bone marrow-derived mesenchymal stem cells (BMMSCs) to provide wound healing cues and vascularization to the dermal and epidermal tissues in establishing a barrier with the implant. Two porous metal percutaneous implants, one treated with BMMSCs and one untreated, were placed subdermally on the dorsum of Lewis rats. Implants were evaluated at 0, 3, 7, 28, and 56 days after implantation. Histological analyses evaluated cellular infiltrates, vascularization, quantity and quality of tissue ingrowth, epidermal downgrowth, and fibrous encapsulation. The amount of collagen infiltrating the porous coating was significantly greater for the BMMSC-treated implants at 3 and 28 days post implantation compared to untreated implants. There was an early influx and resolution of cellular inflammatory infiltrates in the treated implants compared to the untreated, though not statistically significant. Vascularization increased over time in both treated and untreated implants, with no statistical significance. Epidermal downgrowth was minimally observed in all implants with or without the BMMSC treatment. Our results suggest that BMMSCs can influence an early and rapid resolution of acute and chronic inflammation in wound healing, and can stimulate early collagen deposition and granulation tissue associated with later stages of wound repair. These findings provide evidence that BMMSCs can stimulate a more rapid and improved barrier between the skin and porous metal percutaneous implant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.