Additive Manufacturing (AM) is a rapidly developing technology which provides opportunity to build up complex geometries due to the freedom of manufacturing. Lattice structures, three-dimensional opencelled structures composed of one or more repeating unit cells, can be produced with unique mechanical, thermal, acoustic, biomedical and electrical properties by optimization of type and dimension of unit cell and additive manufacturing parameters. Lattice structures provide lightweight and porous parts which are widely preferable in biomedical applications. Different type of lattice structures have been used for obtaining bone like implant surface to accelerate osseointegration. There are many studies in this field, but the ideal designs and dimensional accuracy of the various lattice structures for biomedical field have not been completely reached. In this study, octahedral, star and dodecahedron lattice structures with thin strut diameter were manufactured by laser powder bed fusion technology (LPBF) by Ti6Al4V powder. Cubic and plate samples were built on z-direction and their top and side surfaces were inspected in terms of topographical characteristics and dimensional accuracy by scanning electron microscope. Dimensional accuracy has been found to tend to shrinkage behavior for all lattice structures. The best dimensional accuracy was obtained from octahedral lattice structure comparing with strut diameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.