The promoter state of a gene and its expression levels are modulated by the amounts of transcription factors interacting with its regulatory regions. Hence, one may interpret a gene network as a communicating system in which the state of the promoter of a gene (the source) is communicated by the amounts of transcription factors that it expresses (the message) to modulate the state of the promoter and expression levels of another gene (the receptor). The reliability of the gene network dynamics can be quantified by the Shannon's entropy of the message and the mutual information between the message and the promoter state. Here we consider a stochastic model for a binary gene and use its exact steady state solutions to calculate the entropy and mutual information. We show that a slow switching promoter having long and equally standing ON and OFF states maximizes the mutual information and reduces entropy. That is a bursty regime generating a high variance message governed by a bimodal probability distribution with peaks of the same height. Our results indicate that Shannon's theory can be a powerful framework for understanding how bursty gene expression conciliates with the striking spatio-temporal precision exhibited in pattern formation of developing organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.