Mammalian SIRT6 is a well-studied histone deacetylase that was recently shown to exhibit high protein deacylation activity enabling the removal of long chain fatty acyl groups from proteins. SIRT6 was shown to play key roles in cellular homeostasis by regulating a variety of cellular processes including DNA repair and glucose metabolism. However, the link between SIRT6 enzymatic activities and its cellular functions is not clear. Here, we utilized a directed enzyme evolution approach to generate SIRT6 mutants with improved deacylation activity. We found that while two mutants show increased deacylation activity at high substrate concentration and improved glucose metabolism they exhibit no improvement and even abolished deacetylation activity on H3K9Ac and H3K56Ac in cells. Our results demonstrate the separation of function between SIRT6 catalytic activities and suggest that SIRT6 deacylation activity in cells is important for glucose metabolism and can be mediated by still unknown acylated cellular proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.