The constant growth of electric consumption leads to considerable progress in power conversion. Recent studies have shown that using Gallium Nitride (GaN) as a technological building bloc permits to develop converter operating at high frequency with reduced volume and weight. Furthermore, it is conceivable the monolithic co-integration of devices towards full-GaN switching cells. Therefore, characterization of GaN power devices is needed to provide accurate models in a wide frequency band in order to design new generations of converters. An innovative modeling method for GaN High Electron Mobility Transistor (HEMT) power transistors based on the use of Scattering parameters (Sparameters) and small-signal equivalent circuit was recently developed and validated in previous studies. Meanwhile, the demand concerning GaN diodes increases, pushing forward the need for dedicated electric model. Through S-parameters, current-voltage and current-collapse measurements, this paper presents the characterization of packaged GaN diodes with the aim to establish an accurate nonlinear model. The analyzed devices are still in the development phase, but initial results are very promising and get close to commercial SiC diodes available on the market.
In this paper, a methodology is proposed for studying the current collapse effects of Gallium Nitride (GaN) power diodes and the consequences on the dynamic on-resistance (RON). Indeed, the growing interest of GaN based, high frequency power conversion requires an accurate characterization and a deep understanding of the device’s behaviour before any development of power converters. This study can ultimately be used to model observed trap effects and, thus, improve the equivalent electrical model. Using an in-house circuit and a specific experimental setup, a current-collapse phenomenon inherent to gallium nitride semiconductor is studied on planar 650 V—6 A GaN diodes by applying high voltage stresses over a wide range of temperatures. With this method, useful data on activation energy and capture cross section of electrical defects linked to dynamic RON are extracted. Finally, the origins of such defects are discussed and attributed to carbon-related defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.