The modern automobile is a complex piece of technology that uses the Controller Area Network (CAN) bus system as a central system for managing the communication between the electronic control units (ECUs). Despite its central importance, the CAN bus system does not support authentication and authorization mechanisms, i.e., CAN messages are broadcast without basic security features. As a result, it is easy for attackers to launch attacks at the CAN bus network system. Attackers can compromise the CAN bus system in several ways including Denial of Service (DoS), Fuzzing and Spoofing attacks. It is imperative to devise methodologies to protect modern cars against the aforementioned attacks. In this paper, we propose a Long Short-Term Memory (LSTM)-based Intrusion Detection System (IDS) to detect and mitigate the CAN bus network attacks. We generate our own dataset by first extracting attack-free data from our experimental car and by injecting attacks into the latter and collecting the dataset. We use the dataset for testing and training our model. With our selected hyper-parameter values, our results demonstrate that our classifier is efficient in detecting the CAN bus network attacks, we achieved an overall detection accuracy of 99.995%. We also compare the proposed LSTM method with the Survival Analysis for automobile IDS dataset which is developed by the Hacking and Countermeasure Research Lab, Korea. Our proposed LSTM model achieves a higher detection rate than the Survival Analysis method. INDEX TERMS Modern Car Security, Controller Area Network, Deep Learning, LSTM, Intrusion Detection System FIGURE 1. CAN message format in 11bit mode with DLC=8. There are no security features implemented in this protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.