How viruses evolve within hosts can dictate infection outcomes; however, reconstructing this process is challenging. We evaluate our multiplexed amplicon approach, PrimalSeq, to demonstrate how virus concentration, sequencing coverage, primer mismatches, and replicates influence the accuracy of measuring intrahost virus diversity. We develop an experimental protocol and computational tool, iVar, for using PrimalSeq to measure virus diversity using Illumina and compare the results to Oxford Nanopore sequencing. We demonstrate the utility of PrimalSeq by measuring Zika and West Nile virus diversity from varied sample types and show that the accumulation of genetic diversity is influenced by experimental and biological systems.Electronic supplementary materialThe online version of this article (10.1186/s13059-018-1618-7) contains supplementary material, which is available to authorized users.
How viruses evolve within hosts can dictate infection outcomes; however, reconstructing this process is challenging. We evaluated our multiplexed amplicon approach PrimalSeq to demonstrate how virus concentration, sequencing coverage, primer mismatches, and replicates influence the accuracy of measuring intrahost virus diversity. We developed an experimental protocol and computational tool (iVar) for using PrimalSeq to measure virus diversity using Illumina and compared the results to Oxford Nanopore sequencing. We demonstrate the utility of PrimalSeq by measuring Zika and West Nile virus diversity from varied sample types and show that the accumulation of genetic diversity is influenced by experimental and biological systems.
Mosquitoes rely on RNA interference (RNAi) as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV) infection in C6/36 (Aedes albopictus) cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses). Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae), Sindbis virus (SINV, Togaviridae) and La Crosse virus (LACV, Bunyaviridae) and total RNA recovered from cell lysates. Small RNA (sRNA) libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs) from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26–27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand) and distribution (position along viral genome) of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney) cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level.
The exogenous RNA interference (RNAi) pathway is an important antiviral defense against arboviruses in mosquitoes, and virus-specific small interfering (si)RNAs are key components of this pathway. Understanding the biogenesis of siRNAs in mosquitoes could have important ramifications in using RNAi to control arbovirus transmission. Using deep sequencing technology, we characterized dengue virus type 2 (DENV2)-specific small RNAs produced during infection of Aedes aegypti mosquitoes and A. aegypti Aag2 cell cultures and compared them to those produced in the C6/36 Aedes albopictus cell line. We show that the size and mixed polarity of virus-specific small RNAs from DENV-infected A. aegypti cells indicate that they are products of Dicer-2 (Dcr2) cleavage of long dsRNA, whereas C6/36 cells generate DENV2-specific small RNAs that are longer and predominantly positive polarity, suggesting that they originate from a different small RNA pathway. Examination of virus-specific small RNAs after infection of the two mosquito cell lines with the insect-only flavivirus cell fusing agent virus (CFAV) corroborated these findings. An in vitro assay also showed that Aag2 A. aegypti cells are capable of siRNA production, while C6/36 A. albopictus cells exhibit inefficient Dcr2 cleavage of long dsRNA. Defective expression or function of Dcr2, the key initiator of the RNAi pathway, might explain the comparatively robust growth of arthropod-borne viruses in the C6/36 cell line, which has been used frequently as a surrogate for studying molecular interactions between arboviruses and cells of their mosquito hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.