Tortula ruralis is a homoiochlorophyllous-desiccation-tolerant (HDT) moss that retains all pigments when dehydrated and rapidly recovers physiological function upon rehydration. This moss forms extensive cover in exposed and shaded areas in the sandy semi-arid grasslands of Central Europe. We hypothesized that contrasting drying regimes between these microhabitats would affect plant N status, constraints to gas exchange and growth, as well as result in altered pigment concentrations and ratios, and photochemical light-response dynamics. Furthermore, we believed T. ruralis's HDT habit would limit its ability to acclimate to altered light environment. We found that sun plant T. ruralis had lower plant mass, as well as lower tissue N, C, total photosynthetic pigment concentrations and carbon isotope discrimination (Δ) values compared to shade plant counterparts. Carotenoid/chlorophyll ratios in sun plants were typical of high light-adapted tissue, but chlorophyll a/chlorophyll b ratios were lower, more characteristic of low light-adapted tissue. This unique combination of pigment responses was accompanied by sustained lower levels of optimal quantum efficiency of PSII (F /F) in sun plant T. ruralis, even during favorable diurnal conditions, and reduced engagement of energy-dependent thermal dissipation (NPQ). Reciprocal transplants of sun and shade plants showed that T. ruralis is capable of short-term adjustment to altered light level, as evidenced by increases in F /F, NPQ, and light-adapted PSII yield (φ) in transplanted sun plants, and concurrent decreases in sun-transplanted shade plants. However, the performance of transplanted sun plants remained consistently below that of undisturbed shade plants. These findings show that microenvironmental variation results in different patterns of resource acquisition in this HDT moss, and that growth in the open imparts greater desiccation tolerance, and the development of a greater standing engagement of slowly reversing photoprotective mechanisms. In contrast, prolonged activity and greater resource acquisition in shaded populations may allow T. ruralis to rapidly adjust to changes following disturbance to the plant canopy, fostering the persistence of T. ruralis in these semi-arid grasslands.
Four of the nine sigmodontine tribes have species that serve as reservoirs of rodent-borne hantaviruses (RBO-HV), few have been studied in any depth. Several viruses have been associated with human cases of hantavirus pulmonary syndrome often through peridomestic exposure. Jabora (JABV) and Juquitiba (JUQV), harbored by Akodon montensis and Oligoryzomys nigripes, respectively, are endemic and sympatric in the Reserva Natural de Bosque Mbaracayú (RNBM), Paraguay, a protected area of the Interior Atlantic Forest. Rodent communities were surveyed along a 30 km stretch of the RNBM in eight vegetation classifications (Low, High, Bamboo, Riparian and Liana Forests, Bamboo Understory, Cerrado, and Meadow/Grasslands). We collected 417 rodents from which 11 species were identified; Akodon montensis was the predominant species (72%; 95%CI: 64.7%-76.3%), followed by Hylaeamys megacephalus (15% (11.2%-18.2%)) and Oligoryzomys nigripes (9% (6.6%-12.4%)). We examined the statistical associations among habitat (vegetation class) type, rodent species diversity, population structure (age, sex, and weight), and prevalence of RBO-HV antibody and/or viral RNA (Ab/RNA) or characteristic Leishmania tail lesions. Ab/RNA positive rodents were not observed in Cerrado and Low Forest. A. montensis had an overall Ab/RNA prevalence of 7.7% (4.9%-11.3%) and O. nigripes had an overall prevalence of 8.6% (1.8%-23.1%). For A. montensis, the odds of being Ab/RNA positive in High Forest was 3.73 times of the other habitats combined. There was no significant difference among age classes in the proportion of Ab/RNA positive rodents overall (p = 0.66), however, all 11 RNA-positive individuals were adult. Sex and habitat had independent prognostic value for hantaviral Ab/RNA in the study population; age, presence of tail scar/lesion (19% of the rodents) and weight did not. Adjusting for habitat, female rodents had less risk of becoming infected. Importantly, these data suggest habitat preferences of two sympatric rodent reservoirs for two endemic hantaviruses and the importance of including habitat in models of species diversity and habitat fragmentation.
Between March 2014 and February 2017, host-seeking ticks were collected during the late spring and summer months seasonally, and as well as continually through all seasons from several sites in a periurban environment in Pittsburg, Kansas, located in the Central Midwestern United States. All three post-emergent life-stages of Amblyomma americanum, and the adults of three other ticks viz. Dermacentor variabilis, A. maculatum, and Ixodes scapularis were collected using the flagging method, and were taxonomically identified using morphological and molecular methods. A total of 15946 ticks were collected from these sites. A vast majority of the ticks collected over the three-year study period was A. americanum (79.01%). The three other species collected included D. variabilis (13.10%), A. maculatum (7.15%), and Ixodes scapularis (0.73%). More female ticks of each species were collected throughout the study period from all sites, and a unimodal activity period was noted for all four species. The diversity, composition, and phenology of these medically significant tick species are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.