The COSMIC radio occultation mission represents a revolution in atmospheric sounding from space, with precise, accurate, and all-weather global observations useful for weather, climate, and space weather research and operations. GPS Signal GPS Satellite
Abstract. The Global Positioning System/Meteorology (GPS/MET) Program was established in 1993 by the University Corporation for Atmospheric Research (UCAR) to demonstrate active limb sounding of the Earth's atmosphere using the radio occultation technique. The demonstration system observes occulted GPS satellite signals received by a low Earth orbiting (LEO) satellite, MicroLab-1, launched April 3, 1995. The system can profile ionospheric electron density and neutral atmospheric properties. Neutral atmospheric refractivity, density, pressure, and temperature are derived at altitudes where the amount of water vapor is low. At lower altitudes, vertical profiles of density, pressure, and water vapor pressure can be derived from the GPS/MET refractivity profiles if temperature data from an independent source are available. This paper describes the GPS/MET data analysis procedures and validates GPS/MET data with statistics and illustrative case studies. We compare more than 1200 GPS/MET neutral atmosphere soundings to correlative data from operational global weather analyses, radiosondes, and the GOES, TOVS, UARS/MLS and HALOE orbiting atmospheric sensors. Even though many GPS/MET soundings currently fail to penetrate the lowest 5 km of the troposphere in the presence of significant water vapor, our results demonstrate iøC mean temperature agreement with the best correlative data sets between 1 and 40 km. This and the fact that GPS/MET observations are all-weather and self-calibrating suggests that radio occultation technology has the potential to make a strong contribution to a global observing system supporting weather prediction and weather and climate research.
In this paper, we describe the GPS radio occultation (RO) inversion process currently used at the University Corporation for Atmospheric Research (UCAR) COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) Data Analysis and Archive Center (CDAAC). We then evaluate the accuracy of RO refractivity soundings of the CHAMP (CHAllenging Minisatellite Payload) and SAC-C (Satellite de Aplicaciones Cientificas-C) missions processed by CDAAC software, using data primarily from the month of December 2001. Our results show that RO soundings have the highest accuracy from about 5 km to 25 km. In this region of the atmosphere, the observational errors (which include both measurement and representativeness errors) are generally in the range of 0.3% to 0.5% in refractivity. The observational errors in the tropical lower troposphere increase toward the surface, and reach @3% in the bottom few kilometers of the atmosphere. The RO observational errors also increase above 25 km, particularly over the higher latitudes of the winter hemisphere. These error estimates are, in general, larger than earlier theoretical predictions. The larger observational errors in the lower tropical troposphere are attributed to the complicated structure of humidity, superrefraction and receiver tracking errors. The larger errors above 25 km are related to observational noise (mainly, uncalibrated ionospheric effects) and the use of ancillary data for noise reduction through an optimization procedure. We demonstrate that RO errors above 25 km can be substantially reduced by selecting only low-noise occultations.Our results show that RO soundings have smaller observational errors of refractivity than radiosondes when compared to analyses and short-term forecasts, even in the tropical lower troposphere. This difference is most likely related to the larger representativeness errors associated with the radiosonde, which provides in situ (point) measurements. The RO observational errors are found to be comparable with or smaller than 12-hour forecast errors of the NCEP (National Centers for Environmental Prediction) Aviation (AVN) model, except in the tropical lower troposphere below 3 km. This suggests that RO observations will improve global weather analysis and prediction. It is anticipated that with the use of an advanced signal tracking technique (open-loop tracking) in future missions, such as COSMIC, the accuracy of RO soundings can be further improved.
[1] To examine the suitability of GPS radio occultation (RO) observations as a climate benchmark data set, this study aims at quantifying the structural uncertainty in GPS RO-derived vertical profiles of refractivity and measured refractivity trends obtained from atmospheric excess phase processing and inversion procedures. Five years (2002)(2003)(2004)(2005)(2006) of monthly mean climatologies (MMC) of retrieved refractivity from the experiment aboard the German satellite CHAMP generated by four RO operational centers were compared. Results show that the absolute values of fractional refractivity anomalies among the centers are, in general, 0.2% from 8 to 25 km altitude. The median absolute deviations among the centers are less than 0.2% globally. Because the differences in fractional refractivity produced by the four centers are, in general, unchanging with time, the uncertainty of the trend for fractional refractivity anomalies among centers is ±0.04% per 5 years globally. The primary cause of the trend uncertainty is due to different quality control methods used by the four centers, which yield different sampling errors for different centers. We used the National Centers for Environmental Prediction reanalysis in the same period to estimate sampling errors. After removing the sampling errors, the uncertainty of the trend for fractional refractivity anomalies among centers is between À0.03 and 0.01% per 5 years. Thus 0.03% per 5 years can be considered an upper bound in the processing scheme-induced uncertainty for global refractivity trend monitoring. Systematic errors common to all centers are not discussed in this article but are generally believed to be small.
The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) is a satellite mission for the Earth sciences that will make use of recent developments in remote sensing, communications tech nology, and computing to solve some of the most important geo-scientific issues today. COSMIC plans to launch eight Low Earth Orbit (LEO) satel lites in 2003. Each of these spacecraft will carry three science payloads for weather and space weather research and prediction, climate monitoring, and geodesy: 1) GPS occultation receiver, 2) Tiny Ionospheric Photometer (TIP), and 3) Triband Beacon transmitters (TBB). Each of the LEOs will track the GPS satellites as they are occulted behind the Earth limb to re trieve up to 500 daily profiles of key ionospheric and atmospheric proper ties. Every day the constellation will provide globally about 4000 GPS sound ings. TIP will measure electron densities at the peak of the F2 layer along the satellite track. TBB transmissions will be received on the ground for high-resolution tomographic reconstruction of the ionospheric electron density. COSMIC continuos precise tracking of all GPS satellites in view, also promise to benefit geodetic studies. The COSMIC system includes the LEO satellites, ground data reception and spacecraft control stations, data analysis centers and the data communications networks. This paper gives a COSMIC science overview and describes the COSMIC system. (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.