The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5–50 μm), the spectrum of solar radiation reflected by the Earth and its atmosphere (320–2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a “NIST [National Institute of Standards and Technology] in orbit.” CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations
el; of Silurian soils as a result of pedoturbat i o~~, effectively mcreasing the average depth of soil CO, proiluction.Our results (Table 1) ~m p l y that atmospheric CO-, decllneil 1~y a factor of 10 from the Late S i h r i a n to the Early Permian, closely follow~ng (Fig. 4 ) a decline precllctecl hi; theoretical carbon lnais balance models (1). T h e largest decrease, hetween the Late Sil~lrian a11il Late Devonian. coincides with a of rapid evolution and diversificatlon of the terrestrial ecosystem (18).Estimates of atmospheric C02 levels from separated, time-equivalent ~-7aleosols are consistent, suggertlng that a coherent record of changing atlnospheric chem~stry is yreserl-eii In the ancient soil recorJ.
REFERENCES AND NOTES1 R A Berner Science 261, 68 (1 993) At?? J SCI 294 56 (1 994) 2 T J Crowley and G R North, Paleoc!~~rato!ogy (Oxford UI?I\/ Press, Oxford, 1991) 3 R A Berner and R Ralswell, Geochim. Cosmochlm. Acta 47. 855 11983) L R. I
[1] To examine the suitability of GPS radio occultation (RO) observations as a climate benchmark data set, this study aims at quantifying the structural uncertainty in GPS RO-derived vertical profiles of refractivity and measured refractivity trends obtained from atmospheric excess phase processing and inversion procedures. Five years (2002)(2003)(2004)(2005)(2006) of monthly mean climatologies (MMC) of retrieved refractivity from the experiment aboard the German satellite CHAMP generated by four RO operational centers were compared. Results show that the absolute values of fractional refractivity anomalies among the centers are, in general, 0.2% from 8 to 25 km altitude. The median absolute deviations among the centers are less than 0.2% globally. Because the differences in fractional refractivity produced by the four centers are, in general, unchanging with time, the uncertainty of the trend for fractional refractivity anomalies among centers is ±0.04% per 5 years globally. The primary cause of the trend uncertainty is due to different quality control methods used by the four centers, which yield different sampling errors for different centers. We used the National Centers for Environmental Prediction reanalysis in the same period to estimate sampling errors. After removing the sampling errors, the uncertainty of the trend for fractional refractivity anomalies among centers is between À0.03 and 0.01% per 5 years. Thus 0.03% per 5 years can be considered an upper bound in the processing scheme-induced uncertainty for global refractivity trend monitoring. Systematic errors common to all centers are not discussed in this article but are generally believed to be small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.