Plastic has been detected in the ocean in most locations where scientists have looked for it. While ubiquitous in the environment, plastic pollution is heterogeneous, and plastics of varying composition, shape, and size accumulate differently in the global ocean. Many physical and biological processes influence the transport of plastics in the marine environment. Here we focus on physical processes and how they can naturally sort floating plastics at the ocean surface and within its interior. We introduce a new open-source GPU-accelerated numerical model, ADVECT, which simulates the three-dimensional dispersal of large arrays of modelled ocean plastics with varying size, shape, and density. We use this model to run a global simulation and find that buoyant particles are sorted in the ocean according to their size, both at the surface due to wind-driven drift and in the water column due to their rising velocity. Finally, we compare our findings with recent literature reporting the size distribution of plastics in the ocean and discuss which observations can and cannot be explained by the physical processes encoded in our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.