Anthropogenic landscape change (i.e., disturbance) is recognized as an important factor in the decline and extirpation of wildlife populations. Understanding and monitoring the relationship between wildlife distribution and disturbance is necessary for effective conservation planning. Many studies consider disturbance as a covariate explaining wildlife behavior. However, we propose that there are several advantages to considering the spatial relationship between disturbance and wildlife directly using utilization distributions (UDs), including objective assessment of the spatially explicit overlap between wildlife and disturbance, and the ability to track trends in this relationship over time. Here, we examined how central mountain woodland caribou (Rangifer tarandus caribou) distribution changed over time in relation to (i) anthropogenic disturbance, baseline range (defined using telemetry data from 1998 to 2005), and alpine habitat; and (ii) interannual climate variation (North Pacific Index; NPI). We developed seasonal UDs for caribou in west‐central Alberta and east‐central British Columbia, Canada, monitored with GPS collars between 1998 and 2013. We mapped the cumulative annual density of disturbance features within caribou range and used indices of overlap to determine the spatial relationship and trend between caribou UDs, anthropogenic disturbance, baseline range, alpine habitat, and the NPI. Anthropogenic disturbance increased over time, but the overlap between caribou UDs and disturbance did not. Caribou use of alpine habitat during spring, fall, and late winter increased over time, concurrent with a decrease in use of baseline range. Overlap between caribou UDs and disturbance increased during spring and fall following relatively cold, snowy winters (high NPI), but overall, climate did not explain changes in caribou distribution over time. We provide evidence supporting the hypothesis that caribou populations adjust their spatial distribution in relation to anthropogenic landscape change. Our findings could have implications for population persistence if distributional shifts result in greater use of alpine habitat during winter. Monitoring long‐term changes in the distribution of populations is a valuable component of conservation planning for species at risk in disturbed landscapes.
Populations of boreal and southern mountain caribou in Alberta, Canada, are declining, and the ultimate cause of their decline is believed to be anthropogenic disturbance. Linear features are pervasive across the landscape, and of particular importance, seismic lines established in the 1900s (legacy seismic lines) are slow to regenerate. Off-highway vehicles are widely used on these seismic lines and can hamper vegetative re-growth because of ongoing physical damage, compaction, and active clearing. Restoration of seismic lines within caribou range is therefore a priority for the recovery of threatened populations in Alberta, but a triage-type approach is necessary to prioritize restoration and ensure conservation resources are wisely spent. To target restoration efforts, our objective was to determine factors that best explained levels of off-highway vehicles use on seismic lines intersecting roads. We investigated the relative importance of local topography, vegetation attributes of seismic lines, and broad-scale human factors such as the density of infrastructures and the proximity to recreation campsites and towns to explain the observed levels of off-highway vehicles use. We found that off-highway vehicles use was mainly associated with local topography and vegetation attributes of seismic lines that facilitated ease-of-travel. Broad-scale landscape attributes associated with industrial, recreation access, or hunting activities did not explain levels of off-highway vehicles use. Management actions aimed at promoting natural regeneration and reduce ease-of-travel on legacy seismic lines within caribou ranges can be beneficial to caribou recovery in Alberta, Canada, and we therefore recommend restrictions of off-highway vehicles use on low vegetation, dry seismic lines in caribou ranges.
Anthropogenic linear features facilitate access and travel efficiency for predators, and can influence predator distribution and encounter rates with prey. We used GPS collar data from eight wolf packs and characteristics of seismic lines to investigate whether ease-of-travel or access to areas presumed to be preferred by prey best explained seasonal selection patterns of wolves near seismic lines, and whether the density of anthropogenic features led to functional responses in habitat selection. At a broad scale, wolves showed evidence of habitat-driven functional responses by exhibiting greater selection for areas near low-vegetation height seismic lines in areas with low densities of anthropogenic features. We highlight the importance of considering landscape heterogeneity and habitat characteristics, and the functional response in habitat selection when investigating seasonal behaviour-based selection patterns. Our results support behaviour in line with search for primary prey during summer and fall, and ease-of-travel during spring, while patterns of selection during winter aligned best with ease-of-travel for the less-industrialized foothills landscape, and with search for primary prey in the more-industrialized boreal landscape. These results highlight that time-sensitive restoration actions on anthropogenic features can affect the probability of overlap between predators and threatened prey within different landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.