A wideband space-time channel model is defined, which captures the multiple dependencies and variability in multicell system-wide operating environments. The model provides a unified treatment of spatial and temporal parameters, giving their statistical description and dependencies across a large geographical area for three outdoor environments pertinent to third-generation cellular system simulations. Parameter values are drawn from a broad base of recently published wideband and multiple-antenna measurements. A methodology is given to generate fast-fading coefficients between a base station and a mobile user based on the summation of directional plane waves derived from the statistics of the space-time parameters. Extensions to the baseline channel model, such as polarized antennas, are given to provide a greater variety of spatial environments. Despite its comprehensive nature, the model's implementation complexity is reasonable so it can be used in simulating large-scale systems. Output statistics and capabilities are used to illustrate the main characteristics of the model. IEEE Transactions on Vehicular TechnologyThis work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. Abstract-A wideband space-time channel model is defined, which captures the multiple dependencies and variability in multicell system-wide operating environments. The model provides a unified treatment of spatial and temporal parameters, giving their statistical description and dependencies across a large geographical area for three outdoor environments pertinent to thirdgeneration cellular system simulations. Parameter values are drawn from a broad base of recently published wideband and multiple-antenna measurements. A methodology is given to generate fast-fading coefficients between a base station and a mobile user based on the summation of directional plane waves derived from the statistics of the space-time parameters. Extensions to the baseline channel model, such as polarized antennas, are given to provide a greater variety of spatial environments. Despite its comprehensive nature, the model's implementation complexity is reasonable so it can be used in simulating large-scale systems. Output statistics and capacities are used to illustrate the main characteristics of the model.
The IRC protocol was developed over the last 4 years since it was first implemented as a means for users on a BBS to chat amongst themselves. Now it supports a world-wide network of servers and clients, and is stringing to cope with growth. Over the past 2 years, the average number of users connected to the main IRC network has grown by a factor of 10.The IRC protocol is a text-based protocol, with the simplest client being any socket program capable of connecting to the server.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.