Any loss of cochlear hair cells has been presumed to result in a permanent hearing deficit because the production of these cells normally ceases before birth. However, after acoustic trauma, injured sensory cells in the mature cochlea of the chicken are replaced. New cells appear to be produced by mitosis of supporting cells that survive at the lesion site and do not divide in the absence of trauma. This trauma-induced division of normally postmitotic cells may lead to recovery from profound hearing loss.
Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in nonmammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing significant and functional regeneration in mammals.
The avian auditory epithelium is capable of complete regeneration after hair cell (HC) loss. Most new HCs arise via cell division, but approximately one-third of new HCs arise via direct transdifferentiation (DT), in which supporting cells (SCs) alter their phenotype without dividing. In this study, we used synchronous, gentamicin-induced near-total HC loss in the basal end of the epithelium and continuous infusion of the cell division marker bromodeoxyuridine (BrdU) to identify the origin of each individual regenerating HC. Early new HCs were identified by immunolabeling for the HC-specific marker myosin-VIIa, and mitotic cells with BrdU immunolabeling. The first new HCs arising via DT appear 72-96 hr after gentamicin, 24-48 hr earlier than the first new mitotic HCs. After Day 6, however, most new HCs are mitotic. The "intermediate" morphology that has been suggested to be characteristic of DT is seen in HCs arising via both pathways. These findings suggest that DT is a simpler, more rapid process that produces the first new HCs, and that mitotic regeneration is somewhat slower but ultimately produces most new HCs. The identical morphology of regenerating HCs from both pathways suggests that once HC fate is established, all new HCs follow similar cellular processes during differentiation and reorganization into the regenerated epithelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.