The effects of humic acid (HA) on nutrient accumulation and growth of tomato seedlings were evaluated in a solution of limited nutrient availability in a greenhouse. HA additions were made to the nutrient solution at rates of 0, 640, 1280, or 2560 mg/L. The addition of 1280 mg/L HA produced significant increases in shoot accumulation of P, K, Ca, Mg, Fe, Mn, and Zn as well as increased accumulation of N, Ca, Fe, Zn, and Cu in roots. Fresh and dry weights of roots were also increased, However, on comparing nutrient accumulation in plants treated with 1280 mg/L HA and those given an additional supply of nutrients equivalent to those supplied by HA at the 1280 mg/L rate, shoots accumulated more N, P, K, Fe, and Cu, while roots accumulated more K and Ca. Therefore these increases do not appear to be associated with nutrients contained in HA. Eectrolyte leakage, as an indication of membrane permeability, did not differ as a consequence of HA additions. However, electrolyte leakage correlated positively with HA rate. A shift in solution pH from 5.8 to 7.0 had no effect upon on nutrient accumulation or growth of tomato seedlings. The interaction of pH and addition of HA was not significant 1. Partial funding for this research is from U.S.D.A.
Abstract.– Fish and vegetable production were linked in a recirculating water system designed to achieve a high degree of efficiency of water use for food production in addition to functional and technological simplicity. Hybrid tilapia Oreochromis mossambicus×O. niloticus L. were grown in tanks associated with biofilters (sand beds) in which tomatoes Lycopersicon esculentum were grown. The effect of four biofilter volume (BFV)/fish rearing tank volume ratios (0.67/1, 1.00/1, 1.5011, 2.25/1) on water use efficiency was evaluated.‘Laura’(first experiment) or‘Kewalo’tomatoes were grown 4/m2 in biofilters of four different sizes and surface‐irrigated 8 times daily with water from the associated fish tanks. Daily water consumption increased with BFV/tank ratios and with time. Fish production rates increased with biofilter volume in the first experiment, but were not significantly different in the second experiment. Total tomato fruit yield per plot increased from 13.7 to 31.7 kg (Experiment 1) and from 19.9 to 33.1 kg (Experiment 2) with increasing BFV/tank ratio. For fish plus fruit, total energy production increased from 4,950 to 8,963 kcal/ plot and from 4,804 to 7,424 kcal/plot in Experiments 1 and 2, respectively, and protein production increased from 536 to 794 and from 352 to 483 g/plot in Experiments 1 and 2, respectively, with increasing BFV/ tank ratio. Trends in water use efficiency for production of food energy (kcal/L.) and of protein (g/L) in tomatoes and fish were complex. Water use efficiency
Soil water is a major limiting factor in the production and quality of potatoes (Solanum tuberosum L.). The objectives of this research were to determine the effects of trickle irrigation under controlled soil matric potential and two row spacings on the yield, quality, and nutrient contents of potatoes. Potatoes, trickle irrigated with nutrient solution and grown on 100‐cm row spacing (CSI) on sandy loam (Typic Palendult) soil, yielded 76% more marketable potatoes than those trickle irrigated under a plastic mulch and grown on twin row spacing (TRI) and 206% more than 100‐cm spaced, nonirrigated potatoes (CSNI). Water deficit, calculated by subtracting rainfall from 80% of pan evaporation, was 14.0 cm. Soil matric potentials 15 cm from the soil surface were not different for the CSI and TRI treatments irrigated, respectively, with amounts of water equivalent to 60 and 43% of the water deficit. The N and Mg contents of tubers were increased by irrigation. Leaf petiole nitrate N of CSI and TRI potatoes was consistently greater than 16,000 ppm, a critical level for Russett Burbank potato production in Idaho, but fell significantly below that level for the CSNI potatoes after an extended drought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.