Crystallization is an important process in a wide range of scientific disciplines including chemistry, physics, biology, geology, and materials science. Recent investigations of biomineralization indicate that specific molecular interactions at inorganic-organic interfaces can result in the controlled nucleation and growth of inorganic crystals. Synthetic systems have highlighted the importance of electrostatic binding or association, geometric matching (epitaxis), and stereochemical correspondence in these recognition processes. Similarly, organic molecules in solution can influence the morphology of inorganic crystals if there is molecular complementarity at the crystal-additive interface. A biomimetic approach based on these principles could lead to the development of new strategies in the controlled synthesis of inorganic nanophases, the crystal engineering of bulk solids, and the assembly of organized composite and ceramic materials.
In order to study the effect of organic surface chemistry on calcite nucleation, attachment, and growth, calcium carbonate was precipitated in the presence of various ultrathin-film organosilane-modified silicon wafers. The chemistry of the aminosilane surfaces was systematically changed by the coupling of various acidic molecules, without creating a geometric lattice of acidic functional groups. Optical microscopy, scanning electron microscopy with image analysis, and X-ray scattering were employed to characterize crystallite density and orientation normal to the surface. Calcite grown on amino-modified surfaces was produced with the equilibrium rhombohedral habit and had the 〈104〉 orientation. Surfaces of the silicon oxide, carboxylate, iminodiacetate, or phosphoramidate tended to favor the orientation of surface crystals along 〈001〉 or near the 〈001〉 axes of the crystal. Primarily this is a result of the affinity of the surface for cations, but functional-group-mediated ion ordering and/or stereochemical matching is also suggested by the much greater amount of crystal nucleation on the long-chain carboxylates when compared to shortchain carboxylates. Coupling of nitrilotriacetic acid (NTA) favored appearance of 〈110〉, 〈113〉, and 〈116〉 oriented crystals when compared to the other acid surfaces. Growth of calcite with relatively larger {110} faces was observed when the microcrystals were synthesized in the presence of freely soluble NTA. Appearance of these faces is a result of a relatively suppressed growth rate due to face-specific adsorption on the growing crystallites. Similarly, the enhancement of specific crystal surface binding by the substrate bound NTA is probably the mechanism influencing orientation of surface microcrystals. Two common structural features of the {110}, {113}, and {116} faces are the tilt of the carbonate plane at large angles from the face and the same angle of rotation of the carbonates about their 3-fold symmetry axes. That angle may enhance the ability of two NTA carboxylates to simultaneously occupy carbonate sites of these calcite faces. The fact that crystallite density and orientation are influenced by submonolayers of functional groups attests to the importance of electrostatic and stereochemical recognition of certain crystal faces even without matching of the geometric lattice.
Root turnover is fastest in the finest roots of the root system (first root order). Additionally, tissue chemistry varies among even the finest root orders and between white roots and older, pigmented roots. Yet the effects of pigmentation and order on root decomposition have rarely been examined. We separated the first four root orders (all <1 mm) of four temperate tree species into three classes: white first‐ and second‐order roots; pigmented first‐ and second‐order roots; and pigmented third‐ and fourth‐order roots. Roots were enclosed in litterbags and buried under their own and under a common species canopy in a 34‐year‐old common garden in Poland. When comparing decomposition of different root orders over 36 months, pigmented third‐ and fourth‐order roots with a higher C:N ratio decomposed more rapidly, losing 20–40% of their mass, than pigmented first‐ and second‐order roots, which lost no more than 20%. When comparing decomposition of roots of different levels of pigmentation within the same root order over 14 months, pigmented (older) first‐ and second‐order roots lost ∼10% of their mass, while white (younger) first‐ and second‐order roots lost ∼30%. In contrast to root mass loss, root N content declined more rapidly in the first‐ and second‐order roots than in third‐ and fourth‐order roots. In higher‐order roots, N increased in the first 10 months from ∼110% to nearly 150% of initial N content, depending on species; by the end of the study N content had returned to initial levels. These findings suggest that, in plant communities where root mortality is primarily of pigmented first‐ and second‐order roots, microbial decomposition may be slower than estimates derived from bulk fine‐root litterbag experiments, which typically contain at least four root orders. Thus, a more mechanistic understanding of root decomposition and its contribution to ecosystem carbon and nutrient dynamics requires a fundamental shift in experimental methods that stratifies root samples for decomposition along more functionally based criteria such as root order and pigmentation, which parallel the markedly different longevities of these different root classes.
Sustainability of forage production in the Northeast USA is affected by environmental and climatic variability. Complex forage mixtures may be better adapted than simple mixtures to variable environments and produce greater dry matter (DM) yield more evenly throughout the growing season, thereby increasing sustainability of forage production. A grazing trial was set up to evaluate forage production, nutritive value, and botanical composition dynamics of well-adapted and commonly sown forage species. The forage treatments consisted of simple mixtures (two and three species) and complex mixtures (six and nine species). The experiment was mob-grazed with cow-calf (Bos taurus L.) pairs five times each year. Dry matter distribution during the growing season was independent of mixture complexity; it was, instead, influenced mainly by the weather. When averaged across all 3 yr, mixtures containing six species produced greater (P , 0.001) forage yield (9900 kg DM ha 21) compared with two-species (8700 kg DM ha 21) or three-species mixtures (8400 kg DM ha 21). However, forage production varied within species richness groups. In general, regardless of the initial botanical composition, the predominant species in most mixtures by the end of the experiment were orchardgrass (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.), and white clover (Trifolium repens L.). Variation in nutritive value among mixtures was explained mainly by variation in the proportions of grasses and legumes. We conclude that when it comes to large yields and top nutritive value, the most important consideration is the individual species, not the complexity of the mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.