Escherichia coli produces lactate and acetate in significant amounts during both aerobic and anaerobic glycolysis. A model describing the mechanism of protein mediated lactate transport has previously bee proposed. A simple theoretical analysis here indicates that the proposed model would be drain cellular energy resources by catalytically dissipating the proton-motive force. An experimental analysis of lactate and acetate transport employ nuclear magnetic resonance (NMR) spectroscopy to measure the relative concentration of these end products on the two sides of the cytoplasmic membrane of anaerobically glycolyzing cells. Comparison of measured concentration rations to those expected at equilibrium for various transport modes indicates that acetate is a classical uncoupling agent, permeating the membrane oat comparable rates in the dissociated and undissociated forms. The lactate concentration ratio changes market markedly after an initial period of sustained glycolysis. This change is most readily explained as resulting from a lactate transport system that responds to an indicator of glycolytic activity. The data further indicates that lactate permeates the membrane in both dissociated and undissociated forms. Both acids, then are capable of catalytically dissipating the proton-motives force. (c) 1995 John Wiley & Sons, Inc.
The central structural feature of natural proteins is a tightly packed and highly ordered hydrophobic core. If some measure of exquisite, native-like core packing is necessary for enzymatic function, this would constitute a significant obstacle to the development of novel enzymes, either by design or by natural or experimental evolution. To test the minimum requirements for a core to provide sufficient structural integrity for enzymatic activity, we have produced mutants of the ribonuclease barnase in which 12 of the 13 core residues have together been randomly replaced by hydrophobic alternatives. Using a sensitive biological screen, we find that a strikingly high proportion of these mutants (23%) retain enzymatic activity in vivo. Further substitution at the 13th core position shows that a similar proportion of completely random hydrophobic cores supports enzyme function. Of the active mutants produced, several have no wild-type core residues. These results imply that hydrophobicity is nearly a sufficient criterion for the construction of a functional core and, in conjunction with previous studies, that refinement of a crudely functional core entails more stringent sequence constraints than does the initial attainment of crude core function. Since attainment of crude function is the critical initial step in evolutionary innovation, the relatively scant requirements contributed by the hydrophobic core would greatly reduce the initial hurdle on the evolutionary pathway to novel enzymes. Similarly, experimental development of novel functional proteins might be simplified by limiting core design to mere specification of hydrophobicity and using iterative mutation-selection to optimize core structure.
Exhaustive-substitution studies, where many amino acid replacements are individually tested at all positions in a natural protein, have proven to be very valuable in probing the relationship between sequence and function. The broad picture that has emerged from studies of this sort is one of functional tolerance of substitution. We have applied this approach to barnase, a 110-residue bacterial ribonuclease. Because the selection system used to score barnase mutants as active or inactive detects activity down to a level that can be approached by nonenzyme catalysts, mutants that test inactive are essentially devoid of enzymatic function. Of the 109 barnase positions subjected to substitution, only 15 (14%) are vulnerable to this extreme level of inactivation, and only 2 could not be substituted without such inactivation. A total of 33 substitutions (amounting to 5% of the explored substitutions) were found to render barnase wholly inactive. The profoundly disruptive effects of all of these inactivating substitutions appear to result from either (1) replacement of a side chain that is directly involved in substrate binding or catalysis, (2) replacement of a substantially buried side chain, (3) introduction of a proline residue, or (4) replacement of a glycine residue. Although substitutions of these types are functionally tolerated more often than not, the system used here indicates that only these sorts of substitution are capable of single-handedly reducing catalytic function to, or nearly to, levels that can be achieved by nonenzyme catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.