During production of therapeutic monoclonal antibodies (mAbs) in mammalian cell culture, it is important to ensure that viral impurities and potential viral contaminants will be removed during downstream purification. Anion exchange chromatography provides a high degree of virus removal from mAb feedstocks, but the mechanism by which this is achieved has not been characterized. In this work, we have investigated the binding of three viruses to Q sepharose fast flow (QSFF) resin to determine the degree to which electrostatic interactions are responsible for viral clearance by this process. We first used a chromatofocusing technique to determine the isoelectric points of the viruses and established that they are negatively charged under standard QSFF conditions. We then determined that virus removal by this chromatography resin is strongly disrupted by the presence of high salt concentrations or by the absence of the positively charged Q ligand, indicating that binding of the virus to the resin is primarily due to electrostatic forces, and that any non-electrostatic interactions which may be present are not sufficient to provide virus removal. Finally, we determined the binding profile of a virus in a QSFF column after a viral clearance process. These data indicate that virus particles generally behave similarly to proteins, but they also illustrate the high degree of performance necessary to achieve several logs of virus reduction. Overall, this mechanistic understanding of an important viral clearance process provides the foundation for the development of science-based process validation strategies to ensure viral safety of biotechnology products.
The effect of intraparticle convection in chromatographic columns packed with gigaporous particles (i.e., where dpore/dparticle > 10(-2)) on the band spreading of unretained biomacromolecules is investigated both experimentally and theoretically. A model is developed for the analysis of mass transfer in spherical particles of bidisperse pore structure when both convection and diffusion take place in the larger pores but only diffusion occurs in the smaller pores. The predictions of the model were experimentally verified. It is demonstrated that gigaporous particles have advantages over conventional porous particles (i.e., where dpore/dparticle < 10(-3)) for applications that do not require high resolving power, to bring about fast separation. This is because columns packed with gigaporous particles can be operated at high flow velocities without significant loss of efficiency due to the enhancement of mass transfer by intraparticle convection. The results of the model are used to examine the effectiveness of gigaporous column packings for rapid analytical chromatography and for the concentration and recovery of a dilute solute in a saturation-regeneration cycle utilizing frontal chromatography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.