From small seeds falling from trees to asteroids colliding with planets and moons, the impact of projectiles onto granular targets occurs in nature at different scales. In this paper, we investigate open questions in the mechanics of granular cratering, in particular the forces acting on the projectile, and the roles of granular packing, grain-grain friction and projectile spin. For that, we carried out DEM (discrete element method) computations of the impact of solid projectiles on a cohesionless granular medium, where we varied the projectile and grain properties (diameter, density, friction and packing fraction) for different available energies (within relatively small values). We found that a denser region forms below the projectile, pushing it back and causing its rebound by the end of its motion, and that solid friction affects considerably the crater morphology.Besides, we show that the penetration length increases with the initial spin of the projectile, and that differences in initial packing fractions can engender the diversity of scaling laws found in the literature. Finally, we propose an ad hoc scaling that collapsed our data for the penetration length and can perhaps unify existing correlations. Our results provide new insights into the formation of craters in granular matter.
In this work, computational fluid dynamics simulations of a ferrofluid plane Poiseuille flow in the presence of a constant applied magnetic field are performed. The orientation of the field is perpendicular to the direction of the flow. An original numerical methodology for calculating magnetic and hydrodynamic fields is proposed, including an important discussion about an identified magnetization entrance region. Three different magnetization models are considered to calculate the magnetization field. These models are implemented and validated according to analytic and asymptotic theories, including the one developed in this manuscript. Discrepancies between the models are discussed and interpreted physically. An intricate balance between different physical mechanisms is shown to be responsible for a diffusive-like behavior of the magnetization field. This balance is governed by a competition between the flow’s vorticity and the mechanisms of magnetic relaxation. The physical parameters responsible for this non-equilibrium magnetization dynamics are identified and interpreted using the problem’s timescales. It seems that the combination of three different timescales governs the dynamics of non-equilibrium magnetization: the Brownian diffuse timescale, a hydrodynamic (convective) timescale, and a controllable magnetic timescale associated with the intensity of the applied magnetic field. The results indicate toward the possibility of controlling the development of the flow’s magnetization field through the applied magnetic field, particle size distribution, fluid concentration, and flow rate. In addition, several results are presented regarding the fully developed flow, including magnetization profiles and angles between the applied field H and the magnetization field M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.