We measured severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in primary sewage sludge in the New Haven, Connecticut, USA, metropolitan area during the Coronavirus Disease 2019 (COVID-19) outbreak in Spring 2020. SARS-CoV-2 RNA was detected throughout the more than 10-week study and, when adjusted for time lags, tracked the rise and fall of cases seen in SARS-CoV-2 clinical test results and local COVID-19 hospital admissions. Relative to these indicators, SARS-CoV-2 RNA concentrations in sludge were 0-2 d ahead of SARS-CoV-2 positive test results by date of specimen collection, 0-2 d ahead of the percentage of positive tests by date of specimen collection, 1-4 d ahead of local hospital admissions and 6-8 d ahead of SARS-CoV-2 positive test results by reporting date. Our data show the utility of viral RNA monitoring in municipal wastewater for SARS-CoV-2 infection surveillance at a population-wide level. In communities facing a delay between specimen collection and the reporting of test results, immediate wastewater results can provide considerable advance notice of infection dynamics. The progression of the COVID-19 pandemic has been monitored primarily by testing symptomatic individuals for the presence of SARS-CoV-2 RNA and counting the number of positive tests over time 1. However, in the United States and other countries, the spread of COVID-19 has commonly exceeded the testing capacity of public health systems. Moreover, test results are a lagging indicator of the pandemic's progression 2,3 , because testing is usually prompted by symptoms, which might take 2 weeks to present after infection 4 , and delays occur between the appearance of symptoms, testing and the reporting of test results. Monitoring sewage in a community's collection or treatment system has been used previously to provide early surveillance of disease prevalence at a population-wide level, notably for polio 5,6 , and might be similarly beneficial for the current COVID-19 pandemic. SARS-CoV-2 RNA is present in the stool of patients with COVID-19 (refs. 7-9) and in raw wastewater 10-12 , and increased RNA concentrations in raw wastewater have been recently associated with increases in reported COVID-19 cases 11. However, the utility of wastewater SARS-CoV-2 concentrations for tracking the progression of COVID-19 infections is poorly understood. In this study, we investigated how viral RNA concentrations in
Background: RNA interference (RNAi) is an important anti-viral defense mechanism. The Aedes aegypti genome encodes RNAi component orthologs, however, most populations of this mosquito are readily infected by, and subsequently transmit flaviviruses and alphaviruses. The goal of this study was to use Ae. aegypti as a model system to determine how the mosquito's anti-viral RNAi pathway interacts with recombinant Sindbis virus (SINV; family Togaviridae, genus Alphavirus).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.