Subcellular fractions from rat cerebellum and other tissues were examined for the presence of a 240K glycoprotein, designated GP-A. Previous results have shown that GP-A is enriched in cerebellum synaptic junction (SJ) fractions when compared to parent synaptic plasma membrane (SPM) fractions and is not detected in forebrain SPM or SJ fractions. In the present studies, GP-A was not detected in myelin, mitochondria, purified nuclei, or cytosolic fractions from cerebellum, but was present in microsomal fractions. GP-A is partially soluble in the non-ionic detergent Triton X-100 and is completely soluble when cerebellum SPMs are treated with the ionic detergent N-lauryl sarcosinate. The solubilization of GP-A from cerebellum membranes was shown to be a function of bound calcium ions, e.g., pretreating SPMs with 100 microM-1mM Ca2+ decreased the solubility of GP-A in Triton by approximately threefold. GP-A is a major concanavalin A (Con A)-binding glycoprotein in cerebellum SJ fractions and migrates on sodium dodecyl sulfate (SDS) gels with a slower relative mobility than the 235K/230K fodrin doublet. Comparisons between purified fodrin and the 235K/230K doublet in cerebellum and forebrain synaptic fractions by two-dimensional peptide mapping indicated that they were identical. The Con A-binding property of GP-A was exploited to purify it by affinity chromatography with agarose-Con A. Peptide mapping comparisons between affinity-purified GP-A and GP-A in SPM and SJ fractions indicated that GP-A in synaptic fractions is apparently homogeneous. Peptide map comparisons between GP-A and 235K fodrin poly-peptide indicated that these two synaptic components are highly related (50% of their respective peptides are shared). The 235K fodrin polypeptide in SJs reacted with anti-fodrin antisera on Western blots; however, GP-A failed to cross-react. These observations, together with results from previous studies, indicate that GP-A is highly enriched in cerebellum compared to other neuronal and nonneural tissues. Moreover, GP-A is enriched in SJs relative to SPM fractions, is related to fodrin, and is most likely a cell-surface glycoprotein at asymmetric synapses in cerebellum. GP-A may be involved in neuronal recognition or synaptic transmission in the cerebellum. The important role of calcium in synaptic transmission, together with the decreased solubility of GP-A in Triton that results from micromolar concentrations of calcium, suggest that GP-A may play a role in stabilizing cerebellar synaptic junctions.
Multiple molecular forms of acetylcholinesterase (AChE EC 3.1.1.7) from fast and slow muscle of rat were examined by velocity sedimentation. The fast extensor digitorum longus muscle (EDL) hydrolyzed acetylcholine at a rate of 110 mumol/g wet weight/hr and possessed three molecular forms with apparent sedimentation coefficients of 4S, 10S, and 16S which contribute about 50, 35, and 15% of the AChE activity. The slow soleus muscle hydrolyzed acetylcholine at a rate of 55 mumol/g wet weight/hr and has a 4S, 10S, 12S, and 16S form which contribute 22, 18, 34, and 26% of AChE activity, respectively. A single band of AChE activity was observed when a 1M NaCl extract with CsCl (0.38 g/ml) was centrifuged to equilibrium. Peak AChE activity from EDL and SOL extracts were found at 1.29 g/ml. Resedimentation of peak activity from CsCl gradients resulted in all molecular forms previously found in both muscles. Addition of a protease inhibitor phenylmethylsulfonyl chloride did not change the pattern of distribution. The 4S form of both muscles was extracted with low ionic strength buffer while the 10S, 12S, and 16S forms required high ionic strength and detergent for efficient solubilization. All molecular forms of both muscles have an apparent Km of 2 x 10(-4) M, showed substrate inhibition, and were inhibited by BW284C51, a specific inhibitor of AChE. The difference between these muscles in regards to their AChE activity, as well as in the proportional distribution of molecular forms, may be correlated with sites of localization and differences in the contractile activity of these muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.