Mineralized collagen composites are of interest because they have the potential to provide a bone-like scaffold that stimulates the natural processes of resorption and remodeling. Working toward this goal, our group has previously shown that the nanostructure of bone can be reproduced using a polymer-induced liquid-precursor (PILP) process, which enables intrafibrillar mineralization of collagen with hydroxyapatite (HA) to be achieved. This prior work used polyaspartic acid (pASP), a simple mimic for acidic non-collagenous proteins (NCPs), to generate nanodroplets/nanoparticles of an amorphous mineral precursor which can infiltrate the interstices of type-I collagen fibrils. In this study we show that osteopontin (OPN) can similarly serve as a process-directing agent for the intrafibrillar mineralization of collagen, even though OPN is generally considered a mineralization inhibitor. We also found that inclusion of OPN in the mineralization process promotes the interaction of mouse marrow-derived osteoclasts with PILP-remineralized bone that was previously demineralized, as measured by actin ring formation. While osteoclast activation occurred when pASP was used as the process-directing agent, using OPN resulted in a dramatic effect on osteoclast activation, presumably because of the inherent arginine-glycine-aspartate acid (RGD) ligands of OPN. By capitalizing on the multifunctionality of OPN, these studies may lead the way to producing biomimetic bone substitutes with the capability of tailorable bioresorption rates.
The nanostructure of bone has been replicated using a polymer-induced liquid-precursor (PILP) mineralization process. This polymer-mediated crystallization process yields intrafibrillar mineralization of collagen with uniaxially-oriented hydroxyapatite crystals. The process-directing agent, an anionic polymer which we propose mimics the acidic non-collagenous proteins associated with bone formation, sequesters calcium and phosphate ions to form amorphous precursor droplets that can infiltrate the interstices of collagen fibrils. In search of a polymeric agent that produces the highest mineral content in the shortest time, we have studied the influence of various acidic polymers on the in vitro mineralization of collagen scaffolds via the PILP process. Among the polymers investigated were poly-L aspartic acid (PASP), poly-L-glutamic acid (PGLU), polyvinylphosphonic acid (PVPA), and polyacrylic acid (PAA). Our data indicate that PASP and the combination of PGLU/PASP formed stable mineralization solutions, and yielded nano-structured composites with the highest mineral content. Such studies contribute to our goal of preparing biomimetic bone graft substitutes with composition and structure that mimic bone.
Background Idiopathic calcium oxalate (CaOx) kidney stones develop by deposition of CaOx crystals on Randall's plaques (RP). Mechanisms involved in RP formation are still unclear. Objective It is our hypotheses that RP formation is similar to vascular calcification involving components of extracellular matrix including membrane bound vesicles (MV) and collagen fibers. In order to verify our hypothesis we critically examined renal papillary tissue from stone patients. Methods 4 mm cold-cup biopies of renal papillae were performed on fifteen idiopathic stone patients undergoing PCNL. Tissue was immediately fixed and processed for analyses by various light and electron microscopic techniques. Results and Limitations Spherulitic CaP crystals, the hallmark of RP's, were seen in all samples examined. They were seen in interstitium as well as laminated basement membrane of tubular epithelia. Large crystalline deposits comprised of dark elongated strands mixed with spherulites. Strands showed banded patterns similar to collagen. Crystal deposits were surrounded by collagen fibers and membrane bound vesicles. Energy dispersive x-ray microanalyses (EDX) and electron diffraction identified the crystals as hydroxyapatite. The number of kidneys examined is small and urinary data was not available for all the patients. Conclusions Results presented here show that crystals in the Randall's plaques are associated with both the collagen as well as MV. Collagen fibers appeared calcified and vesicles contained crystals. We conclude that crystal deposition in renal papillae may have started with membrane vesicle induced nucleation and grew by addition of crystals on the periphery within a collagen framework.
Bone is an organic-inorganic composite which has hierarchical structuring that leads to high strength and toughness. The nanostructure of bone consists of nanocrystals of hydroxyapatite embedded and aligned within the interstices of collagen fibrils. This unique nanostructure leads to exceptional properties, both mechanical and biological, making it difficult to emulate bone properties without having a bone-like nanostructured material. A primary goal of our group’s work is to use biomimetic processing techniques that lead to bone-like structures. In our prior studies, we demonstrated that intrafibrillar mineralization of porous collagen sponges, leading to a bone-like nanostructure, can be achieved using a polymer-induced liquid-precursor (PILP) mineralization process. The objective of this study was to investigate the use of this polymer-directed crystallization process to mineralize dense collagen substrates. To examine collagen scaffolds that truly represent the dense-packed matrix of bone, manatee bone was demineralized to isolate its collagen matrix, consisting of a dense, lamellar osteonal microstructure. This biogenic collagen scaffold was then remineralized using polyaspartate to direct the mineralization process through an amorphous precursor pathway. Various conditions investigated included polymer molecular weight, substrate dimension and mineralization time. Mineral penetration depths of up to 100 μms were achieved using this PILP process, compared to no penetration with only surface precipitates observed for the conventional crystallization process. Electron microscopy, wide-angle X-ray diffraction, and thermal analysis were used to characterize the resulting hydroxyapatite/collagen composites. These studies demonstrate that the original interpenetrating bone nanostructure and osteonal microstructure could be recovered in a biogenic matrix using the PILP process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.