Models for understanding and controlling oscillations in the flow past a rectangular cavity are developed. These models may be used to guide control designs, to understand performance limits of feedback, and to interpret experimental results. Traditionally, cavity oscillations are assumed to be self-sustained: no external disturbances are necessary to maintain the oscillations, and amplitudes are limited by nonlinearities. We present experimental data which suggests that in some regimes, the oscillations may not be self-sustained, but lightly damped: oscillations are sustained by external forcing, such as boundary-layer turbulence. In these regimes, linear models suffice to describe the behaviour, and the final amplitude of oscillations depends on the characteristics of the external disturbances. These linear models are particularly appropriate for describing cavities in which feedback has been used for noise suppression, as the oscillations are small and nonlinearities are less likely to be important. It is shown that increasing the gain too much in such feedback control experiments can lead to a peak-splitting phenomenon, which is explained by the linear models. Fundamental performance limits indicate that peak splitting is likely to occur for narrow-bandwidth actuators and controllers.
[1] Dynamic aspects of the climate's response to forcing are typically explored through transient simulations in the time domain. However, because of the large range of time-scales involved, some features are more easily observed in the frequency domain. We compute the frequency-response of the HadCM3L general circulation model (GCM) to sinusoidal perturbations in solar radiative forcing, with periods between 2 −1/2 and 2 9 (512) years. The global mean temperature response decreases with increasing frequency, and the frequency scaling at time-scales longer than one year is consistent with the behavior of diffusion into a semi-infinite slab. The land-sea contrast and land-averaged precipitation, however, exhibit relatively little dependency on the frequency of the imposed perturbation, with significant response at both short and long periods. Understanding these relative characteristics of different climate variables in the frequency domain is important to understanding the transient response of the climate system to both anthropogenic and natural (e.g., volcanic) forcings; the frequency response is also relevant in understanding the spectrum of natural variability.Citation: MacMynowski, D. G., H.-J. Shin, and K. Caldeira (2011), The frequency response of temperature and precipitation in a climate model, Geophys. Res. Lett., 38, L16711,
One of the factors that can influence the performance of large optical telescopes is the vibration of the telescope structure due to unsteady wind inside the telescope enclosure. Estimating the resulting degradation in image quality has been difficult because of the relatively poor understanding of the flow characteristics. Significant progress has recently been made, informed by measurements in existing observatories, wind-tunnel tests, and computational fluid dynamic analyses. We combine the information from these sources to summarize the relevant wind characteristics and enable a model of the dynamic wind loads on a telescope structure within an enclosure. The amplitude, temporal spectrum, and spatial distribution of wind disturbances are defined as a function of relevant design parameters, providing a significant improvement in our understanding of an important design issue.
Solar radiation management (SRM), a form of geoengineering, might be used to offset some fraction of the anthropogenic radiative forcing of climate as a means to reduce climate change, but the risks and effectiveness of SRM are uncertain. We examine the possibility of testing SRM through sub-scale deployment as a means to test models of climate response to SRM and explore risks prior to full-scale implementation. Contrary to some claims, this could provide meaningful tests of the climate's response to SRM within a decade. We use idealized simulations with the HadCM3L general circulation model (GCM) to estimate the response to SRM and signal-to-noise ratio for global-scale SRM forcing tests, and quantify the trade-offs between duration and intensity of the test and it's ability to make quantitative measurements of the climate's response to SRM forcing. The response at long timescales would need to be extrapolated from results measured by a short-term test; this can help reduce the uncertainty associated with relatively rapid climate feedbacks, but uncertainties that only manifest at long timescales can never be resolved by such a test. With this important caveat, the transient climate response may be bounded with 90% confidence to be no more than 1.5 C higher than it's estimated value, in a single decade test that used roughly 1/10th the radiative forcing perturbation of a CO 2doubling. However, tests could require several decades or longer to obtain accurate response estimates, particularly to understand the response of regional hydrological fields which are critical uncertainties. Some fields, like precipitation over land, have as large a response to short period forcing as to slowlyvarying changes. This implies that the ratio of the hydrological to the temperature response that results from a sustained SRM deployment will differ from that of either a short-duration test or that which has been observed to result from large volcanic eruptions.
[1] Some key elements of ENSO are not consistently well captured in GCMs. However, modifying the wrong parameters may lead to the right result for the wrong reason. We introduce "transfer functions" to quantify the input/ output relationship of individual processes from model output, to compare them to the corresponding observed processes. Two key transfer functions are calculated: first, the relationship between western Pacific Rossby waves and the reflecting Kelvin waves; second, the frequency-dependent relation between Kelvin waves traveling toward the eastern boundary and sea surface temperature response. These are estimated for TAO array data, the Cane-Zebiak model, and the GFDL CM2.1 coupled GCM. Some feedbacks are found to be biased in both models. Re-tuning parameters to fit observed transfer functions leads to a deteriorated solution, implying that compensating errors lead to the seemingly accurate simulation. This approach should be broadly useful in making climate model improvement more systematic and observation-driven. Citation: MacMynowski, D. G., and E. Tziperman (2010), Testing and improving ENSO models by process using transfer functions, Geophys. Res. Lett., 37, L19701,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.