Abstract. Conceptual clustering is an important way of summarizing and explaining data. However, the recent formulation of this paradigm has allowed little exploration of conceptual (:lustering as a means of improving performance. Furthermore, previous work in conceptual clustering has not explicitly dealt with constraints imposed by real world environments. This article presents COBWEB, a conceptual clustering system that organizes data so as to maximize inference ability. Additionally, COBWEB is incremental and computationally economical, and thus can be flexibly applied in a variety of domains.
Given a set of observations, humans acquire concepts that organize those observations and use them in classifying future experiences. This type of concept formation can occur in the absence of a tutor and it can take place despite irrelevant and incomplete information. A reasonable model of such human concept learning should be both incremental and capable of handling the type of complex experiences that people encounter in the real world. In this paper, we review three previous models of incremental concept formation and then present CLASSIT, a model that extends these earlier systems. All of the models integrate the process of recognition and learning, and all can be viewed as carrying out search through the space of possible concept hierarchies. In an attempt to show that CLASSIT is a robust concept formation system, we also present some empirical studies of its behavior under a variety of conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.