Thin films of ion‐conducting polymers are an important area of study due to their function in many electrochemical devices and as analogues for interfacial phenomena that occur in bulk films. In this paper, the properties of Nafion, a prototypical ionomer, are investigated as thin films (4 to 300 nm) on carbon, gold, and platinum substrates that are fabricated using different casting methods and thermal histories. Specifically, water uptake, swelling, and morphology are investigated by quartz‐crystal microbalance, ellipsometry, and grazing‐incidence X‐ray scattering to develop structure/property/processing relationships. For all substrates, as the films' thickness decreased, there is an initial decrease in swelling followed by a subsequent increase for film thicknesses below ≈20 nm due to a disordering of the film hydrophilic/hydrophobic structure. Decreased swelling and less structural order is observed on gold for spin‐cast films compared to self‐assembled films; the opposite effect is observed for films on carbon. The presented systematic data set and analyses represent a thorough study of the behavior of Nafion thin films on model substrates of interest in metal catalyst/carbon electrodes, and these insights help to elucidate the underlying polymer physics and confinement effects in these and related systems.
Micropatterned anion exchange membranes (AEMs) have been 3D printed via a photoinitiated free radical polymerization and quaternization process. The photocurable formulation, consisting of diurethane dimethacrylate (DUDA), poly(ethylene glycol) diacrylate (PEGDA), dipentaerythritol penta-/hexa- acrylate, and 4-vinylbenzyl chloride (VBC), was directly cured into patterned films using a custom 3D photolithographic printing process similar to stereolithography. Measurements of water uptake, permselectivity, and ionic resistance were conducted on the quaternized poly(DUDA-co-PEGDA-co-VBC) sample series to determine their suitability as ion exchange membranes. The water uptake of the polymers increased as the ion exchange capacity (IEC) increased due to greater quaternized VBC content. Samples with IEC values between 0.98 to 1.63 mequiv/g were synthesized by varying the VBC content from 15 to 25 wt %. The water uptake was sensitive to the PEGDA content in the network resulting in water uptake values ranging from 85 to 410 wt % by varying the PEGDA fractions from 0 to 60 wt %. The permselectivity of the AEM samples decreased from 0.91 (168 wt %, 1.63 mequiv/g) to 0.85 (410 wt %, 1.63 mequiv/g) with increasing water uptake and to 0.88 (162 wt %, 0.98 mequiv/g) with decreasing IEC. Permselectivity results were relatively consistent with the general understanding of the correlation between permselectivity, water uptake, and ion content of the membrane. Lastly, it was revealed that the ionic resistance of patterned membranes was lower than that of flat membranes with the same material volume or equivalent thickness. A parallel resistance model was used to explain the influence of patterning on the overall measured ionic resistance. This model may provide a way to maximize ion exchange membrane performance by optimizing surface patterns without chemical modification to the membrane.
Mechanically tough, cross-linked anion exchange membranes (AEM) based on poly(2,6-dimethylphenylene oxide) (PPO) were achieved by introducing a hydrophilic and flexible Jeffamine (O,O′-bis(2-aminopropyl)polypropylene glycol-block-poly(ethylene glycol)-block-polypropylene glycol 500) cross-linker into the cationic macromolecular network. The Jeffamine cross-linked AEMs demonstrated outstanding strength and flexibility and were mechanically tougher than AEM samples based on benzyltrimethylammonium (BTMA) functionalized PPO alone. The hydrated BTMA40 membrane showed 52% elongation at break, while the Jeffamine-based J10PPO sample had a 167% elongation at break. In addition, the hydroxide (OH–) conductivity of the J10PPO sample was 52 mS/cm at 80 °C with a swelling ratio of 61%, while BTMA60 suffered severe swelling above 60 °C. The alkaline stabilities of the AEMs with different degrees of Jeffamine cross-linking were evaluated in 1 M NaOH at 80 °C for 500 h. During the 500 h degradation test, J10PPO exhibited the greatest cation stability. The OH– conductivity of this membrane decreased by 30% over 500 h. In contrast, the OH– conductivity of BTMA40 decreased to 9.6 mS/cm at 20 °C, which is 60% lower than the value measured for the sample before the stability test. Based on the high-performance Jeffamine cross-linked AEM, a Pt-catalyzed fuel cell with a peak power density of 314 mW/cm2 was demonstrated at 60 °C under 100% related humidity.
Bromoalkyl-functionalized poly(olefin)s were synthesized by copolymerization of 4-(4-methylphenyl)-1butene with 11-bromo-1-undecene using Ziegler−Natta polymerization. The resulting bromoalkyl-functionalized poly-(olefin)s were converted to quaternary ammonium-containing anion-conductive copolymers by reacting the pendant bromoalkyl group with trimethylamine or a custom-synthesized tertiary amine containing pendant quaternary ammonium moieties. Poly(olefin)-based AEMs with three cations per side chain showed considerably higher hydroxide conductivities, up to 201 mS/cm at 80 °C in liquid water, compared to that of samples with only one cation per bromoalkyl site (68 mS/cm, 80 °C, liquid water), likely due to phase separation in the triple-cation structure. More importantly, triple-cation side-chain poly(olefin) AEMs exhibited higher hydroxide conductivity under relative humidity conditions (50%−100%) than typical AEMs based on benzyltrimethylammonium cations. The triple-cation the triple-cation side-chain poly(olefin)-based AEM exhibited an ionic conductivity as high as 115 mS/cm under 95% RH at 80 °C and 11 mS/cm under 50% RH at 80 °C. In addition to high ionic conductivity, the triple-cation side-chain poly(olefin) AEMs exhibited good chemical and dimensional stability. High retention of ionic conductivity (>85%) was observed for the samples in 1 M NaOH at 80 °C over 1000 h. Based on these high-performance poly(olefin) AEMs, a fuel cell with a peak power density of 0.94 W cm −2 (1.28 W cm −2 after iR correction) was achieved under H 2 /O 2 at 70 °C. The results of this study suggest a new, low-cost, and scalable route for preparation of poly(olefin)-based AEMs for anion exchange membrane applications.
The effects of film thickness and substrate composition on the ionomer structure in porous electrodes is critical in understanding pathways towards developing higher performance electrochemical devices, including fuel cells and batteries. Insights are gained into the molecular and nanostructural orientation dependence for thin Nafion films (12 to 300 nm thick) on gold, platinum, and SiO 2 model substrates. Molecular orientation is determined from the birefringence measured using spectroscopic ellipsometry, while the nanostructural orientation of the ionic domains was measured using grazing-incidence smallangle X-ray scattering. Density functional theory calculations for the molecular polarizability of the Nafion backbone and side chain show complimentary contributions to the measured birefringence values for the material. Nafion films prepared on SiO 2 substrates exhibit a nearly isotropic molecular and nanostructural orientation. Films on gold and platinum display parallel backbone orientations, relative to the substrate, with decreasing film thickness. However, a birefringence transition towards molecular isotropy is observed for 30 nm thick films on Au and Pt; while the ionic nanostructured domains continuously align parallel to the substrate. This apparent isotropic molecular orientation with increasing domain orientation highlights the difference between the backbone and side chain orientation, a key finding for elucidating transport in confined films at the interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.