The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional ( Flagellum-based motility plays a critical role in the biology and pathogenesis of many bacteria (3,6,17,31). The wellconserved flagellum is commonly divided into three physical parts: the flagellar motor, the helically shaped flagellar filament, and the hook which provides a universal joint between the motor and the filament. In most bacteria, counterclockwise rotation of the flagella results in bundling of the helical flagella and propulsion of the cell through liquid or viscous environments. Clockwise rotation of the flagellar motor results in random turning of the cell with little translational motion ("tumbling"). Bacterial motility is thus a zigzag pattern of runs and tumbles, in which chemotactic signals favor running toward attractants and away from repellents (3).Borrelia burgdorferi and other closely related spirochetes are the causative agents of Lyme disease, which is transmitted to humans via infected Ixodes ticks (40). Spirochetes have a distinctive morphology in that the flagella are enclosed within the outer membrane sheath and are thus called periplasmic flagella (6). The flagellar motors are located at both ends of the cell and are coordinated to rotate in opposite directions during translational motion and in the same direction (i.e., both clockwise or both counterclockwise) during the spirochete equivalent of tumbling, called "flexing" (6,15). Spirochetes are also capable of reversing translational motion by coordinated reversal of the direction of motor rotation at both ends of the cell. Rotation of the flagella causes a serpentine movement of the entire cell body, allowing B. burgdorferi to efficiently bore its way through tissue and disseminate throughout the mammalian host, resulting in manifestations in the joints, nervous system, and heart (40).The flagellar motor is an extraordinary nanomachine powered by the electrochemical potential of specific ions across the cytoplasmic membrane (3). Current knowledge of the flagellar motor structure and rotational mechanisms is based primarily on studies of Escherichia coli and Salmonella enterica and is summarized in several recent comprehensive reviews (3,22,31,39,42). The flagellar motor is constructed from at least 20 different kinds of proteins. The approximate location of these flagellar proteins has been determined by a variety of approaches and appears to be relatively consistent in a wide variety of bacteria. It can be divided into several morphological domains: the MS ring (FliF, the base for the flagellar motor); the C ring (FliG, FliM, and FliN, the switch complex regulating motor rotation); the export apparatus (multiple-protein complex located at the cytop...
We evaluated the performance of the MinION DNA sequencer in-flight on the International Space Station (ISS), and benchmarked its performance off-Earth against the MinION, Illumina MiSeq, and PacBio RS II sequencing platforms in terrestrial laboratories. Samples contained equimolar mixtures of genomic DNA from lambda bacteriophage, Escherichia coli (strain K12, MG1655) and Mus musculus (female BALB/c mouse). Nine sequencing runs were performed aboard the ISS over a 6-month period, yielding a total of 276,882 reads with no apparent decrease in performance over time. From sequence data collected aboard the ISS, we constructed directed assemblies of the ~4.6 Mb E. coli genome, ~48.5 kb lambda genome, and a representative M. musculus sequence (the ~16.3 kb mitochondrial genome), at 100%, 100%, and 96.7% consensus pairwise identity, respectively; de novo assembly of the E. coli genome from raw reads yielded a single contig comprising 99.9% of the genome at 98.6% consensus pairwise identity. Simulated real-time analyses of in-flight sequence data using an automated bioinformatic pipeline and laptop-based genomic assembly demonstrated the feasibility of sequencing analysis and microbial identification aboard the ISS. These findings illustrate the potential for sequencing applications including disease diagnosis, environmental monitoring, and elucidating the molecular basis for how organisms respond to spaceflight.
Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained “template-independent” sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.
Rapid DNA sequencing and analysis has been a long-sought goal in remote research and point-of-care medicine. In microgravity, DNA sequencing can facilitate novel astrobiological research and close monitoring of crew health, but spaceflight places stringent restrictions on the mass and volume of instruments, crew operation time, and instrument functionality. The recent emergence of portable, nanopore-based tools with streamlined sample preparation protocols finally enables DNA sequencing on missions in microgravity. As a first step toward sequencing in space and aboard the International Space Station (ISS), we tested the Oxford Nanopore Technologies MinION during a parabolic flight to understand the effects of variable gravity on the instrument and data. In a successful proof-of-principle experiment, we found that the instrument generated DNA reads over the course of the flight, including the first ever sequenced in microgravity, and additional reads measured after the flight concluded its parabolas. Here we detail modifications to the sample-loading procedures to facilitate nanopore sequencing aboard the ISS and in other microgravity environments. We also evaluate existing analysis methods and outline two new approaches, the first based on a wave-fingerprint method and the second on entropy signal mapping. Computationally light analysis methods offer the potential for in situ species identification, but are limited by the error profiles (stays, skips, and mismatches) of older nanopore data. Higher accuracies attainable with modified sample processing methods and the latest version of flow cells will further enable the use of nanopore sequencers for diagnostics and research in space.
Adherence to intestinal cells is a key process in infection caused by enterohemorrhagic Escherichia coli (EHEC). Several adhesion factors that mediate the binding of EHEC to intestinal cells have been described, but the receptors involved in their recognition are not fully characterized. Extracellular matrix (ECM) proteins might act as receptors involved in the recognition of enteric pathogens, including EHEC. In this study, we sought to characterize the binding of EHEC O157:H7 to ECM proteins commonly present in the intestine. We found that EHEC prototype strains as well as other clinical isolates adhered more abundantly to surfaces coated with fibronectin, laminin, and collagen IV. Further characterization of this phenotype, by using antiserum raised against the LpfA1 putative major fimbrial subunit and by addition of mannose, showed that a reduced binding of EHEC to ECM proteins was observed in a long polar fimbria (lpf) mutant. We also found that the two regulators, H-NS and Ler, had an effect in EHEC Lpf-mediated binding to ECM, supporting the roles of these tightly regulated fimbriae as adherence factors. Purified Lpf major subunit bound to all of the ECM proteins tested. Finally, increased bacterial adherence was observed when T84 cells, preincubated with ECM proteins, were infected with EHEC. Taken together, these findings suggest that the interaction of Lpf and ECM proteins contributes to the EHEC colonization of the gastrointestinal tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.