Telescopes and imaging interferometers with sparsely filled apertures can be lighter weight and less expensive than conventional filled-aperture telescopes. However, their greatly reduced MTF's cause significant blurring and loss of contrast in the collected imagery. Image reconstruction algorithms can correct the blurring completely when the signal-to-noise ratio (SNR) is high, but only partially when the SNR is low. This paper compares both linear (Wiener) and nonlinear (iterative maximum likelihood) algorithms for image reconstruction under a variety of circumstances. These include high and low SNR, Gaussian noise and Poisson-noise dominated, and a variety of aperture configurations and degrees of sparsity. The quality metric employed to compare algorithms is image utility as quantified by the National Imagery Interpretability Rating Scale (NIIRS). On balance, a linear reconstruction algorithm with a power-law power-spectrum estimate performed best.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.