We present a general neural model for supervised learning of pattern categories which can resolve pattern classes separated by nonlinear, essentially arbitrary boundaries. The concept of a pattern class develops from storing in memory a limited number of class elements (prototypes). Associated with each prototype is a modifiable scalar weighting factor (lambda) which effectively defines the threshold for categorization of an input with the class of the given prototype. Learning involves (1) commitment of prototypes to memory and (2) adjustment of the various lambda factors to eliminate classification errors. In tests, the model ably defined classification boundaries that largely separated complicated pattern regions. We discuss the role which divisive inhibition might play in a possible implementation of the model by a network of neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.