Cloud infrastructure commonly relies on virtualization. Customers provide their own VMs, and the cloud provider runs them often without knowledge of the guest OSes or their configurations. However, cloud customers also want effective and efficient security for their VMs. Cloud providers offering security-as-a-service based on VM introspection promise the best of both worlds: efficient centralization and effective protection. Since customers can move images from one cloud to another, an effective solution requires learning what guest OS runs in each VM and securing the guest OS without relying on the guest OS functionality or an initially secure guest VM state.We present a solution that is highly scalable in that it (i) centralizes guest protection into a security VM, (ii) supports Linux and Windows operating systems and can be easily extended to support new operating systems, (iii) does not assume any a-priori semantic knowledge of the guest, (iv) does not require any a-priori trust assumptions into any state of the guest VM. While other introspection monitoring solutions exist, to our knowledge none of them monitor guests on the semantic level required to effectively support both white-and black-listing of kernel functions, or allows to start monitoring VMs at any state during run-time, resumed from saved state, and cold-boot without the assumptions of a secure start state for monitoring.
Network traffic attribution, namely, inferring users responsible for activities observed on network interfaces, is one fundamental yet challenging task in network security forensics. Compared with other user-system interaction records, network traces are inherently coarsegrained, context-sensitive, and detached from user ends. This paper presents Kaleido, a new network traffic attribution tool with a series of key features: a) it adopts a new class of inductive discriminant models to capture user-and context-specific patterns ("footprints") from different aspects of network traffic; b) it applies efficient learning methods to extracting and aggregating such footprints from noisy historical traces; c) with the help of novel indexing structures, it is able to perform efficient, runtime traffic attribution over high-volume network traces. The efficacy of Kaleido is evaluated with extensive experimental studies using the real network traces collected over three months in a large enterprise network.
Cyber threat hunting is the process of proactively and iteratively formulating and validating threat hypotheses based on securityrelevant observations and domain knowledge. To facilitate threat hunting tasks, this paper introduces threat intelligence computing as a new methodology that models threat discovery as a graph computation problem. It enables efficient programming for solving threat discovery problems, equipping threat hunters with a suite of potent new tools for agile codifications of threat hypotheses, automated evidence mining, and interactive data inspection capabilities. A concrete realization of a threat intelligence computing platform is presented through the design and implementation of a domain-specific graph language with interactive visualization support and a distributed graph database. The platform was evaluated in a two-week DARPA competition for threat detection on a test bed comprising a wide variety of systems monitored in real time. During this period, sub-billion records were produced, streamed, and analyzed, dozens of threat hunting tasks were dynamically planned and programmed, and attack campaigns with diverse malicious intent were discovered. The platform exhibited strong detection and analytics capabilities coupled with high efficiency, resulting in a leadership position in the competition. Additional evaluations on comprehensive policy reasoning are outlined to demonstrate the versatility of the platform and the expressiveness of the language.
In this paper, we present the design, architecture, and implementation of a novel analysis engine, called Feature Collection and Correlation Engine (FCCE), that finds correlations across a diverse set of data types spanning over large time windows with very small latency and with minimal access to raw data. FCCE scales well to collecting, extracting, and querying features from geographically distributed large data sets. FCCE has been deployed in a large production network with over 450,000 workstations for 3 years, ingesting more than 2 billion events per day and providing low latency query responses for various analytics. We explore two security analytics use cases to demonstrate how we utilize the deployment of FCCE on large diverse data sets in the cyber security domain: 1) detecting fluxing domain names of potential botnet activity and identifying all the devices in the production network querying these names, and 2) detecting advanced persistent threat infection. Both evaluation results and our experience with real-world applications show that FCCE yields superior performance over existing approaches, and excels in the challenging cyber security domain by correlating multiple features and deriving security intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.