A large-scale field experiment on natural gradient transport of solutes in groundwater has been conducted at a site in Borden, Ontario. Well-defined initial conditions were achieved by the pulse injection of 12 m s of a uniform solution containing known masses of two inorganic tracers (chloride and bromide) and five halogenated organic chemicals (bromoform, carbon tetrachloride, tetrachloroethylene, 1,2-dichlorobenzene, and hexachloroethane). A dense, three-dimensional array of over 5000 sampling points was installed throughout the zone traversed by the solutes. Over 19,900 samples have been collected over a 3-year period. The tracers followed a linear horizontal trajectory at an approximately constant velocity, both of which compare well with expectations based on water table contours and estimates of hydraulic head gradient, porosity, and hydraulic conductivity. The vertical displacement over the duration of the experiment was small. Spreading was much more pronounced in the horizontal longitudinal than in the horizontal transverse direction; vertical spreading was very small. The organic solutes were retarded in mobility, as expected. ford University advised on the selection of organic compounds; Gary Hopkins was instrumental in the design and implementation of the experiment. Kent Keller, Stephanie O'Hannesin, Ernie Kaleny, and Bill Blackport (University of Waterloo) contributed greatly during the instrumentation of the site and the collection of the samples. Other collaborators from the University of Waterloo included
Carbon and hydrogen isotopic fractionation during aerobic biodegradation of MTBE by a bacterial pure culture (PM1) and a mixed consortia from Vandenberg Air Force Base (VAFB) were studied in order to assess the relative merits of stable carbon versus hydrogen isotopic analysis as an indicator of biodegradation. Carbon isotopic enrichment in residual MTBE of up to 8.1/1000 was observed at 99.7% biodegradation. Carbon fractionation was reproducible in the PM1 and VAFB experiments, yielding similar enrichment factors (epsilon) of -2.0/1000 +/- 0.1/1000 to -2.4/1000 +/- 0.3/1000 for replicates in the PM1 experiment and -1.5/1000 +/- 0.1/1000 to -1.8/1000 +/- 0.1/1000 for replicates in the VAFB experiment. Hydrogen isotopic fractionation was highly reproducible for the PM1 pure cultures, with epsilon values of -33/1000 +/- 5/1000 to -37/1000 +/- 4/1000 for replicate samples. In the VAFB microcosms, there was considerably more variability in epsilon values, with values of -29/1000 +/- 4/1000 and -66/1000 +/- 3/1000 measured for duplicate sample bottles. Despite this variability, hydrogen isotopic fractionation always resulted in 2H enrichment of the residual MTBE of >80/1000 at 90% biodegradation. The reproducible carbon fractionation suggests that compound-specific carbon isotope analysis may be used to estimate the extent of biodegradation at contaminated sites. Conversely, the large hydrogen isotopic fractionation documented during biodegradation of MTBE suggests that compound-specific hydrogen isotope analysis offers the most conclusive means of identifying in-situ biodegradation at contaminated sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.