CYP2D metabolically activates codeine to morphine, which is required for codeine analgesia. Permeability across the blood-brain barrier, and active efflux, suggests that initial morphine in the brain after codeine is due to brain CYP2D metabolism. Human CYP2D is higher in the brains, but not in the livers, of smokers and 7-day nicotine treatment induces rat brain, but not hepatic, CYP2D. The role of nicotine-induced rat brain CYP2D in the central metabolic activation of peripherally administered codeine and resulting analgesia was investigated. Rats received 7-day nicotine (1 mg/kg subcutaneously) and/or a single propranolol (CYP2D mechanism-based inhibitor; 20 μg intracerebroventricularly) pretreatment, and then were tested for analgesia and drug levels following codeine (20 mg/kg intraperitoneally) or morphine (3.5 mg/kg intraperitoneally), matched for peak analgesia. Nicotine increased codeine analgesia (1.59X AUC(0-30 min) vs vehicle; p<0.001), while propranolol decreased analgesia (0.56X; p<0.05); co-pretreatment was similar to vehicle controls (1.23X; p>0.1). Nicotine increased, while propranolol decreased, brain, but not plasma, morphine levels, and analgesia correlated with brain (p<0.02), but not plasma (p>0.4), morphine levels after codeine. Pretreatments did not alter baseline or morphine analgesia. Here we show that brain CYP2D alters drug response despite the presence of substantial first-pass metabolism of codeine and further that nicotine induction of brain CYP2D increases codeine response in vivo. Thus variation in brain CYP2D activity, due to genetics or environment, may contribute to individual differences in response to centrally acting substrates. Exposure to nicotine may increase central drug metabolism, not detected peripherally, contributing to altered drug efficacy, onset time, and/or abuse liability.
Oxycodone is metabolized by CYP2D to oxymorphone. Despite oxymorphone being a more potent opioid-receptor agonist, its contribution to oxycodone analgesia may be minor because of low peripheral production, low blood-brain barrier permeability and central nervous system efflux. CYP2D metabolism within the brain may contribute to variation in central oxycodone and oxymorphone levels, thereby affecting analgesia. Brain CYP2D expression and activity are subject to exogenous regulation; nicotine induces rat brain, but not liver, CYP2D consistent with higher brain CYP2D in smokers. We assessed the role of rat brain CYP2D in orally administered oxycodone metabolism (in vivo brain microdialysis) and analgesia (tail-flick test) by inhibiting brain CYP2D selectively with intracerebroventricular propranolol (mechanism-based inhibitor) and inducing brain CYP2D with nicotine. Inhibiting brain CYP2D increased brain oxycodone levels (1.8-fold; P < 0.03) and analgesia (1.5-fold AUC ; P < 0.001) after oxycodone, while inducing brain CYP2D increased brain oxymorphone levels (4.6-fold; P < 0.001) and decreased analgesia (0.8-fold; P < 0.02). Inhibiting the induced brain CYP2D reversed the change in oxycodone levels (1.2-fold; P > 0.1) and analgesia (1.1-fold; P > 0.3). Brain, but not plasma, metabolic ratios were affected by pre-treatments. Peak analgesia was inversely correlated with ex vivo brain (P < 0.003), but not hepatic (P > 0.9), CYP2D activity. Altering brain CYP2D did not affect analgesia from oral oxymorphone (P > 0.9 for AUC across all groups), which is not a CYP2D substrate. Thus, brain CYP2D metabolism alters local oxycodone levels and response, suggesting that people with increased brain CYP2D activity may have reduced oxycodone response. Factors that alter individual oxycodone response may be useful for optimizing treatment and minimizing abuse liability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.