Congenital lipoid adrenal hyperplasia is an autosomal recessive disorder that is characterized by impaired synthesis of all adrenal and gonadal steroid hormones. In three unrelated individuals with this disorder, steroidogenic acute regulatory protein, which enhances the mitochondrial conversion of cholesterol into pregnenolone, was mutated and nonfunctional, providing genetic evidence that this protein is indispensable normal adrenal and gonadal steroidogenesis.
Steroid hormone biosynthesis is acutely regulated by pituitary trophic hormones and other steroidogenic stimuli. This regulation requires the synthesis of a protein whose function is to translocate cholesterol from the outer to the inner mitochondrial membrane in steroidogenic cells, the rate-limiting step in steroid hormone formation. The steroidogenic acute regulatory (StAR) protein is an indispensable component in this process and is the best candidate to fill the role of the putative regulator. StAR is expressed in steroidogenic tissues in response to agents that stimulate steroid production, and mutations in the StAR gene result in the disease congenital lipoid adrenal hyperplasia, in which steroid hormone biosynthesis is severely compromised. The StAR null mouse has a phenotype that is essentially identical to the human disease. The positive and negative expression of StAR is sensitive to agents that increase and inhibit steroid biosynthesis respectively. The mechanism by which StAR mediates cholesterol transfer in the mitochondria has not been fully characterized. However, the tertiary structure of the START domain of a StAR homolog has been solved, and identification of a cholesterol-binding hydrophobic tunnel within this domain raises the possibility that StAR acts as a cholesterol-shuttling protein.
Steroid hormone biosynthesis in steroidogenic cells is regulated through trophic hormone activation of protein kinase A (PKA) signaling pathways. However, many examples of the regulation of steroid synthesis via pathways other than the PKA pathway have been documented. In some cases these pathways act independently of PKA activation whereas in other cases, they act synergistically with it. The current understanding of additional signaling pathways and factors, such as the protein kinase C pathway, arachidonic acid metabolites, growth factors, chloride ion, the calcium messenger system, and others capable of regulating/modulating steroid hormone biosynthesis, and in many cases steroidogenic acute regulatory protein expression, are discussed in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.