Anion‐exchange‐membrane water electrolyzers (AEMWEs) in principle operate without soluble electrolyte using earth‐abundant catalysts and cell materials and thus lower the cost of green H2. Current systems lack competitive performance and the durability needed for commercialization. One critical issue is a poor understanding of catalyst‐specific degradation processes in the electrolyzer. While non‐platinum‐group‐metal (non‐PGM) oxygen‐evolution catalysts show excellent performance and durability in strongly alkaline electrolyte, this has not transferred directly to pure‐water AEMWEs. Here, AEMWEs with five non‐PGM anode catalysts are built and the catalysts’ structural stability and interactions with the alkaline ionomer are characterized during electrolyzer operation and post‐mortem. The results show catalyst electrical conductivity is one key to obtaining high‐performing systems and that many non‐PGM catalysts restructure during operation. Dynamic Fe sites correlate with enhanced degradation rates, as does the addition of soluble Fe impurities. In contrast, electronically conductive Co3O4 nanoparticles (without Fe in the crystal structure) yield AEMWEs from simple, standard preparation methods, with performance and stability comparable to IrO2. These results reveal the fundamental dynamic catalytic processes resulting in AEMWE device failure under relevant conditions, demonstrate a viable non‐PGM catalyst for AEMWE operation, and illustrate underlying design rules for engineering anode catalyst/ionomer layers with higher performance and durability.
The commercial success of mammalian cell-derived recombinant proteins has fostered an increase in demand for novel single-use bioreactor (SUB) systems that facilitate greater productivity, increased flexibility and reduced costs (Zhang et al., 2010). These systems exhibit fluid flow regimes unlike those encountered in traditional glass/stainless steel bioreactors because of the way in which they are designed. With such disparate hydrodynamic environments between SUBs currently on the market, traditional scale-up approaches applied to stirred tanks should be revised. One such SUB is the Mobius® 3 L CellReady, which consists of an upward-pumping marine scoping impeller. This work represents the first experimental study of the flow within the CellReady using a Particle Image Velocimetry (PIV) approach, combined with a biological study into the impact of these fluid dynamic characteristics on cell culture performance. The PIV study was conducted within the actual vessel, rather than using a purpose-built mimic. PIV measurements conveyed a degree of fluid compartmentalisation resulting from the up-pumping impeller. Both impeller tip speed and fluid working volume had an impact upon the fluid velocities and spatial distribution of turbulence within the vessel. Cell cultures were conducted using the GS-CHO cell-line (Lonza) producing an IgG4 antibody. Disparity in cellular growth and viability throughout the range of operating conditions used (80–350 rpm and 1–2.4 L working volume) was not substantial, although a significant reduction in recombinant protein productivity was found at 350 rpm and 1 L working volume (corresponding to the highest Reynolds number tested in this work). The study shows promise in the use of PIV to improve understanding of the hydrodynamic environment within individual SUBs and allows identification of the critical hydrodynamic parameters under the different flow regimes for compatibility and scalability across the range of bioreactor platforms.
Single-use technology is being widely adopted for the manufacture of biotherapeutics and cell therapy products. Rocked single-use bioreactors in particular have been commonly used, however the hydrodynamics have rarely been characterised and are poorly understood. In this work, phase-resolved Particle Image Velocimetry and high frequency visual fluid tracking were used to investigate the flow pattern and velocity characteristics for the first time. The studies were performed on an optically accessible mimic of a Sartorius 2L CultiBag at different conditions. Wave formation was observed and higher rocking speeds caused the fluid to move proportionately out of phase with respect to the platform. Dimensional comparisons of fluid velocities with conventional bioreactors suggest that similar fluid dynamics characteristics can be achieved between rocked and stirred configurations. These results provide a first insight into the fluid dynamics of a novel bioreactor type at relevant process conditions supporting the generation of scale translation laws. Topical Area: Transport Phenomena and Fluid Mechanics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.