Abstract-This paper presents a real-time, object-independent grasp synthesis method which can be used for closed-loop grasping. Our proposed Generative Grasping Convolutional Neural Network (GG-CNN) predicts the quality and pose of grasps at every pixel. This one-to-one mapping from a depth image overcomes limitations of current deep-learning grasping techniques by avoiding discrete sampling of grasp candidates and long computation times. Additionally, our GG-CNN is orders of magnitude smaller while detecting stable grasps with equivalent performance to current state-of-the-art techniques. The lightweight and single-pass generative nature of our GG-CNN allows for closed-loop control at up to 50Hz, enabling accurate grasping in non-static environments where objects move and in the presence of robot control inaccuracies. In our real-world tests, we achieve an 83% grasp success rate on a set of previously unseen objects with adversarial geometry and 88% on a set of household objects that are moved during the grasp attempt. We also achieve 81% accuracy when grasping in dynamic clutter.
We present a novel approach to perform object-independent grasp synthesis from depth images via deep neural networks. Our generative grasping convolutional neural network (GG-CNN) predicts a pixel-wise grasp quality that can be deployed in closed-loop grasping scenarios. GG-CNN overcomes shortcomings in existing techniques, namely discrete sampling of grasp candidates and long computation times. The network is orders of magnitude smaller than other state-of-the-art approaches while achieving better performance, particularly in clutter. We run a suite of real-world tests, during which we achieve an 84% grasp success rate on a set of previously unseen objects with adversarial geometry and 94% on household items. The lightweight nature enables closed-loop control of up to 50 Hz, with which we observed 88% grasp success on a set of household objects that are moved during the grasp attempt. We further propose a method combining our GG-CNN with a multi-view approach, which improves overall grasp success rate in clutter by 10%. Code is provided at https://github.com/dougsm/ggcnn
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.