There is little known about the sequences that mediate the initiation of transcription in Bacteroides fragilis, thus transcriptional start sites for 13 new genes were determined and a total of 23 promoter regions upstream of the start sites were aligned and similarities were noted. A region at about 37 contained a consensus sequence of TAnnTTTG and upstream in the region centered at about 333, another TTTG motif was found in the majority of promoters examined. Canonical, Escherichia coli, 310 and 335 consensus sequences were not readily apparent. Mutations within the 37 motif indicated the TTTG residues were essential since changes in this sequence reduced the promoter activity to that of a no promoter control in a chloramphenicol acetyl transferase transcriptional fusion model system. Additional fusion studies indicated that the 333 region was also necessary for full activity. ß
Isolated flagellar filaments of Sulfolobus shibatae were 15 nm in diameter, and they were composed of two major flagellins which have M r s of 31,000 and 33,000 and which stained positively for glycoprotein. The flagellar filaments of Thermoplasma volcanium were 12 nm in diameter and were composed of one major flagellin which has an M r of 41,000 and which also stained positively for glycoprotein. N-terminal amino acid sequencing indicated that 18 of the N-terminal 20 amino acid positions of the 41-kDa flagellin of T. volcanium were identical to those of the Methanococcus voltae 31-kDa flagellin. Both flagellins of S. shibatae had identical amino acid sequences for at least 23 of the N-terminal positions. This sequence was least similar to any of the available archaeal flagellin sequences, consistent with the phylogenetic distance of S. shibatae from the other archaea studied.
Methanococcus voltae is a flagellated member of the Domain Archaea that has four flagellin genes arranged in two transcriptional units. One transcriptional unit encodes only flaA while the second is a multi-cistronic unit encoding three flagellin genes (flaB1, flaB2, and flaB3) as well as at least seven other open reading frames downstream. The polymerase chain reaction was used to amplify an internal fragment of the flaA gene which was subsequently cloned into an insertion vector developed for M. voltae. Transformation of protoplasts with this vector led to the isolation of mutant strains that had insertions in flaA or flaB2. Mutant strains carrying insertions in flaA had flagelia that were similar to wild-type cells in both number and appearance when viewed using the electron microscope. In addition, some of these mutant strains had profiles identical to the wild type in immunoblots developed with antisera raised against the 31 kDa flagellin of M. voltae. All flaA mutant strains and the wild-type cells showed immuno-cross-reactive bands at 33 and 31 kDa (corresponding to purified flagellins) as well as at 18 kDa. Some flaA mutant strains also showed an immuno-cross-reactive band at 27 kDa which probably represents a truncated flagellin produced by the insertion vector. However, both types of flaA mutant strains were less motile than the wild type in semi-swarm plate experiments. The mutant strain with an insertion in flaB2 was non-flagellated when examined by electron microscopy and it was non-motile in semi-swarm plate experiments. It represents the first structural mutant strain isolated in a methanogen. This mutant strain lacked the 33, 31, and 18 kDa immuno-cross-reactive bands observed in the wild type and flaA mutant strains, and instead had a novel band at 20 kDa. This band may represent an unmodified flagellin which still has an attached leader peptide. If so, then one of the downstream genes in the multi-cistronic transcriptional unit may encode a leader peptidase for the flagellin system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.