Four Cu(I) complexes were synthesized with a family of pyridylmethylamide ligands, HL(R) [HL(R) = N-(2-pyridylmethyl)acetamide, R = null; 2,2-dimethyl-N-(2-pyridylmethyl)propionamide, R = Me(3); 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide, R = Ph(3))]. Complexes 1-3 were synthesized from the respective ligand and [Cu(CH(3)CN)(4)]PF(6) in a 2 : 1 molar ratio: [Cu(HL)(2)]PF(6) (1), [Cu(2)(HL(Me3))(4)](PF(6))(2) (2), [Cu(HL(Ph3))(2)]PF(6) (3). Complex 4, [Cu(HL)(CH(3)CN)(PPh(3))]PF(6), was synthesized from the reaction of HL with [Cu(CH(3)CN)(4)]PF(6) and PPh(3) in a 1 : 1 : 1 molar ratio. X-Ray crystal structures reveal that complexes 1, 3 and 4 are mononuclear Cu(I) species, while complex 2 is a Cu(I) dimer. The copper ions are four-coordinate with geometries ranging from distorted tetrahedral to seesaw in 1, 2, and 4. Complexes 1 and 2 are very air sensitive and they display similar electrochemical properties. The coordination geometry of complex 3 is nearly linear, two-coordinate. Complex 3 is exceptionally stable with respect to oxidation in the air, and its cyclic voltammetry shows no oxidation wave in the range of 0-1.5 V. The unusual inertness of complex 3 towards oxidation is attributed to the protection from bulky triphenyl substituent of the HL(Ph3) ligand. A new geometric parameter for four-coordinate compounds, tau(4), is proposed as an improved, simple metric for quantitatively evaluating the geometry of four-coordinate complexes and compounds.
Proteins and RNA are unique among known polymers in their ability to adopt compact and well-defined folding patterns. These two biopolymers can perform complex chemical operations such as catalysis and highly selective recognition, and these functions are linked to folding in that the creation of an active site requires proper juxtaposition of reactive groups. So the development of new types of polymeric backbones with well-defined and predictable folding propensities ('foldamers') might lead to molecules with useful functions. The first step in foldamer development is to identify synthetic oligomers with specific secondary structural preferences. Whereas alpha-amino acids can adopt the well-known alpha-helical motif of proteins, it was shown recently that beta-peptides constructed from carefully chosen beta-amino acids can adopt a different, stable helical conformation defined by interwoven 14-membered-ring hydrogen bonds (a 14-helix; Fig. 1a). Here we report that beta-amino acids can also be used to design beta-peptides with a very different secondary structure, a 12-helix (Fig. 1a). This demonstrates that by altering the nature of beta-peptide residues, one can exert rational control over the secondary structure.
Reaction of ([2,5-Ph(2)-3,4-Tol(2)(eta(5)-C(4)CO)](2)H)Ru(2)(CO)(4)(mu-H) (6) with H(2) formed [2,5-Ph(2)-3,4-Tol(2)(eta(5)-C(4)COH)Ru(CO)(2)H] (8), the active species in catalytic carbonyl reductions developed by Shvo. Kinetic studies of the reduction of PhCHO by 8 in THF at -10 degrees C showed second-order kinetics with Delta H(double dagger) = 12.0 kcal mol(-1) and Delta S(double dagger) = -28 eu. The rate of reduction was not accelerated by CF(3)CO(2)H, and was not inhibited by CO. Selective deuteration of the RuH and OH positions in 8 gave individual kinetic isotope effects k(RuH)/k(RuD) = 1.5 +/- 0.2 and k(OH)/k(OD) = 2.2 +/- 0.1 for PhCHO reduction at 0 degrees C. Simultaneous deuteration of both positions in 8 gave a combined kinetic isotope effect of k(OHRuH)/k(ODRuD) = 3.6 +/- 0.3. [2,5-Ph(2)-3,4-Tol(2)(eta(5)-C(4)COSiEt(3))Ru(CO)(2)H] (12) and NEt(4)(+)[2,5-Ph(2)-3,4-Tol(2)(eta(4)-C(4)CO)Ru(CO)(2)H](-) (13) were unreactive toward PhCHO under conditions where facile PhCHO reduction by 8 occurred. PhCOMe was reduced by 8 30 times slower than PhCHO; MeN=CHPh was reduced by 8 26 times faster than PhCHO. Cyclohexene was reduced to cyclohexane by 8 at 80 degrees C only in the presence of H(2.) Concerted transfer of a proton from OH and hydride from Ru of 8 to carbonyls and imines is proposed.
Effects of a 1-semester professional development (PD) intervention that included expert coaching with Head Start teachers were investigated in a randomized controlled trial with 88 teachers and 759 children. Differential effects of technologically mediated (remote) versus in-person (on-site) delivery of individualized coaching with teachers also were examined in a random assignment design. Hierarchical linear model analyses revealed positive PD intervention effects on general classroom environment (d ϭ 0.99) and classroom supports for early literacy and language development (d ϭ 0.92), and on children's letter knowledge (d ϭ 0.29), blending skills (d ϭ 0.18), writing (d ϭ 0.17), and concepts about print (d ϭ 0.22). No significant intervention effects on teaching practices and children's outcomes related to oral language were found. There were no differential effects of remote versus on-site delivery of literacy coaching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.