Together we are stronger' In this work, the preparation of the quaternary nanocomposite TiO 2 /CdS/rGO/Pt is reported along with its application, for the first time, as a catalyst for the photocatalytic reduction of carbon dioxide (CO 2 ) to methane (CH 4 ). TiO 2 /CdS nanoparticles and Pt nanoparticle-decorated reduced graphene oxide sheets (rGO/Pt) were synthesized separately and characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, UV-vis spectroscopy and photoelectrochemical experiments. Hydrocarbon samples were collected and analysed using gas chromatography (GC). After 5 hours of illumination under visible light, 0.11 mmol of CH 4 was produced at an average production rate of 0.0867 mmol h À1 , which is higher than the production of CH 4 measured from the TiO 2 /CdS and the TiO 2 /CdS/Pt control samples. The photoelectrochemical experiments confirmed that the presence of rGO sheets in the nanocomposite enhanced the electrochemical and photocatalytic properties of the nanocomposite as a result of rapid electron transport and the inhibition of charge recombination.
View Article Online View Journal | View Issue
Preparation of quaternary nanocomposite TiO 2 /CdS/ rGO/PtNanocomposites were prepared by dispersing 1% by weight of rGO/Pt and TiO 2 /CdS into an isopropanol/water solution (2 : 1). The system was kept in an ultrasonic bath for 30 minutes to completely disperse the components in the solvent mixture. Aerwards, the suspension of the quaternary nanocomposite This journal is
Figura 37. Espectro de transientes em (a). Decaimento dos transientes formados em 340, 450 e 590nm representados em b, c e d respectivamente. 62 Figura 38. Gráficos de Stern Volmer utilizando stb como supressor. a) Em 340nm com k q 2,5×10 10 L mol -1 s -1 . b) Em 450nm, k q 9,26×10 9 L mol -1 s -1 .64 Figura 39. Gráficos de Stern-Volmer utilizando como supressor 2-Propanol. (a) Em 340nm k q 1,15×10 6 L mol -1 s -1 . (b) Em 450nm k q 6,88 10 5 L mol -1 s -1 .66 Figura 40. Espectros de transientes da TX-A em metanol. (a) Em solução desaerada e (b) Na presença de ar. 67 Figura 41. Espectro de transientes da TX-A em 1-Propanol. (a) Em solução desaerada e (b) Na presença de ar. 67 Figura 42. Espectros de transientes da TX-A em 1-Hexanol. (a) Em solução desaerada. (b) Na presença de ar. 67 Figura 43. Decaimento de transientes da TX-A em metanol. (a) 415nm solução desaerada (b) 415nm em ar. (c) 515nm solução desaerada (d) 515nm ar. 68 Figura 44. Decaimento dos transientes da TX-A em 1-propanol. (a) 415nm N 2 . (b) 415nm ar. (c) 515nm N 2 . (d) 515nm ar. 69 Figura 45. Decaimentos da TX-A em 1-hexanol. As figuras (a) e (c) ilustram os decaimentos realizados em atmosfera de N 2 . com comprimentos de onda em 415 e 515nm respectivamente. Já as figuras (b) e (d) resultaram das medidas em ar nos em 415 e 515nm respectivamente. 70 Figura 46. Curvas exotérmicas de polimerização dos sistemas A1-A4. Os valores das áreas sob as curvas são: 2,067; 3,983; 2,552 e 0,259 W g -1 min -1 para os sistemas A1, A2, A3 e A4, respectivamente. 76 Figura 47. Porcentagem de conversão em função do tempo de irradiação para os sistemas (a) A1, (b) A2, (c) A3 e (d) A4. 77 Figura 48. Curvas exotérmica de polimerização dos sistemas B1-B4. O valor das áreas sob as curvas é: 2,067; 2,435; 2,552 e 0,259 W g -1 min -1 para os sistemas A1, A2, A3 e A4, respectivamente. 79
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.