An autotopism of a Latin square is a triple (α, β, γ) of permutations such that the Latin square is mapped to itself by permuting its rows by α, columns by β, and symbols by γ. Let Atp(n) be the set of all autotopisms of Latin squares of order n. Whether a triple (α, β, γ) of permutations belongs to Atp(n) depends only on the cycle structures of α, β and γ. We establish a number of necessary conditions for (α, β, γ) to be in Atp(n), and use them to determine Atp(n) for n 17. For general n we determine if (α, α, α) ∈ Atp(n) (that is, if α is an automorphism of some quasigroup of order n), provided that either α has at most three cycles other than fixed points or that the non-fixed points of α are in cycles of the same length.
A motif in a network is a connected graph that occurs significantly more frequently as an induced subgraph than would be expected in a similar randomized network. By virtue of being atypical, it is thought that motifs might play a more important role than arbitrary subgraphs. Recently, a flurry of advances in the study of network motifs has created demand for faster computational means for identifying motifs in increasingly larger networks. Motif detection is typically performed by enumerating subgraphs in an input network and in an ensemble of comparison networks; this poses a significant computational problem. Classifying the subgraphs encountered, for instance, is typically performed using a graph canonical labeling package, such as Nauty, and will typically be called billions of times. In this article, we describe an implementation of a network motif detection package, which we call NetMODE. NetMODE can only perform motif detection for -node subgraphs when , but does so without the use of Nauty. To avoid using Nauty, NetMODE has an initial pretreatment phase, where -node graph data is stored in memory (). For we take a novel approach, which relates to the Reconstruction Conjecture for directed graphs. We find that NetMODE can perform up to around times faster than its predecessors when and up to around times faster when (the exact improvement varies considerably). NetMODE also (a) includes a method for generating comparison graphs uniformly at random, (b) can interface with external packages (e.g. R), and (c) can utilize multi-core architectures. NetMODE is available from netmode.sf.net.
Major web search engines answer thousands of queries per second requesting information about billions of web pages. The data sizes and query loads are growing at an exponential rate. To manage the heavy workload, we consider techniques for utilizing a Graphics Processing Unit (GPU). We investigate new approaches to improve two important operations of search engines-lists intersection and index compression. For lists intersection, we develop techniques for efficient implementation of the binary search algorithm for parallel computation. We inspect some representative real-world datasets and find that a sufficiently long inverted list has an overall linear rate of increase. Based on this observation, we propose Linear Regression and Hash Segmentation techniques for contracting the search range. For index compression, the traditional d-gap based compression schemata are not well-suited for parallel computation, so we propose a Linear Regression Compression schema which has an inherent parallel structure. We further discuss how to efficiently intersect the compressed lists on a GPU. Our experimental results show significant improvements in the query processing throughput on several datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.