This work investigates a method for pre-screening material systems for Selective Laser Sintering (SLS) using a combination of Revolution Powder Analysis (RPA) and machine learning. To develop this method, nylon was mixed with alumina or carbon fibers in different wt.% to form material systems with varying flowability. The materials were measured in a custom RPA device and the results compared with as-spread layer density and surface roughness. Machine learning was used to attempt classification of all powders for each method. Ultimately, it was found that the RPA method is able to reliably classify powders based on their flowability, but as-spread layer density and surface roughness were not able to be classified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.