S-nitrosylation, the covalent attachment of a nitrogen monoxide group to the thiol side chain of cysteine, has emerged as an important mechanism for dynamic, post-translational regulation of most or all main classes of protein. S-nitrosylation thereby conveys a large part of the ubiquitous influence of nitric oxide (NO) on cellular signal transduction, and provides a mechanism for redox-based physiological regulation.
SummaryProtein S-nitrosylation conveys a large part of the ubiquitous influence of nitric oxide on cellular signal transduction, and accumulating evidence indicates important roles for S-nitrosylation both in normal physiology and in a broad spectrum of human diseases. Here we review recent findings that implicate S-nitrosylation in cardiovascular, pulmonary, musculoskeletal and neurological (dys)function, as well as in cancer. The emerging picture shows that, in many cases, pathophysiology correlates with hypo-or hyper-S-nitrosylation of specific protein targets, rather than a general cellular insult due to loss of or enhanced nitric oxide synthase activity. In addition, it is increasingly evident that dysregulated S-nitrosylation can result not only from alterations in the expression, compartmentalization and/or activity of nitric oxide synthases but can also reflect a contribution from denitrosylases, including prominently the S-nitrosoglutathione (GSNO)-metabolizing enzyme, GSNO reductase. Finally, because exogenous mediators of protein Snitrosylation or denitrosylation can substantially affect the development or progression of disease, potential therapeutic agents that modulate S-nitrosylation could well have broad clinical utility.
Previous studies support a model in which the physiological O2 gradient is transduced by haemoglobin into the coordinate release from red blood cells of O2 and nitric oxide (NO)-derived vasoactivity to optimize oxygen delivery in the arterial periphery. But whereas both O2 and NO diffuse into red blood cells, only O2 can diffuse out. Thus, for the dilation of blood vessels by red blood cells, there must be a mechanism to export NO-related vasoactivity, and current models of NO-mediated intercellular communication should be revised. Here we show that in human erythrocytes haemoglobin-derived S-nitrosothiol (SNO), generated from imported NO, is associated predominantly with the red blood cell membrane, and principally with cysteine residues in the haemoglobin-binding cytoplasmic domain of the anion exchanger AE1. Interaction with AE1 promotes the deoxygenated structure in SNO-haemoglobin, which subserves NO group transfer to the membrane. Furthermore, we show that vasodilatory activity is released from this membrane precinct by deoxygenation. Thus, the oxygen-regulated cellular mechanism that couples the synthesis and export of haemoglobin-derived NO bioactivity operates, at least in part, through formation of AE1-SNO at the membrane-cytosol interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.