Evidence for a three-coordinate silyl cation is provided by the crystal structure of [(Mes)
3
Si][H-CB
11
Me
5
Br
6
]·C
6
H
6
(where Mes is 2,4,6-trimethylphenyl). Free (Mes)
3
Si
+
cations are well separated from the carborane anions and benzene solvate molecules.
Ortho
-methyl groups of the mesityl substituents shield the silicon atom from the close approach of nucleophiles, while remaining innocent as significant ligands themselves. The silicon center is three-coordinate and planar. The downfield
29
Si nuclear magnetic resonance chemical shift in the solid state (226.7 parts per million) is almost identical to that in benzene solution and in “gas phase” calculations, indicating that three-coordination can be preserved in all phases.
Chemical-level details such as protonation and hybridization state are critical for understanding enzyme mechanism and function. Even at high resolution, these details are difficult to determine by X-ray crystallography alone. The chemical shift in NMR spectroscopy, however, is an extremely sensitive probe of the chemical environment, making solid-state NMR spectroscopy and X-ray crystallography a powerful combination for defining chemically detailed three-dimensional structures. Here we adopted this combined approach to determine the chemically rich crystal structure of the indoline quinonoid intermediate in the pyridoxal-5'-phosphate-dependent enzyme tryptophan synthase under conditions of active catalysis. Models of the active site were developed using a synergistic approach in which the structure of this reactive substrate analogue was optimized using ab initio computational chemistry in the presence of side-chain residues fixed at their crystallographically determined coordinates. Various models of charge and protonation state for the substrate and nearby catalytic residues could be uniquely distinguished by their calculated effects on the chemical shifts measured at specifically (13)C- and (15)N-labeled positions on the substrate. Our model suggests the importance of an equilibrium between tautomeric forms of the substrate, with the protonation state of the major isomer directing the next catalytic step.
Even as available magnetic fields for NMR continue to increase, resolution remains one of the most critical limitations in assigning and solving structures of larger biomolecules. Here we present a novel constant-time through-bond correlation spectroscopy for solids that offers superior resolution for 13C chemical shift assignments in proteins. In this experiment, the indirect evolution and transfer periods are combined into a single constant time interval, offering increased resolution while not sacrificing sensitivity. In GB1, this allows us to resolve peaks that are otherwise unresolved and to make assignments in the absence of multibond transfers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.