We evaluated 26 901 patients who underwent allogeneic hematopoietic cell transplantation (HCT) at 271 centers worldwide to define patterns of posttransplantation lymphoproliferative disorders (PTLDs). PTLDs developed in 127 recipients, with 105 (83%) cases occurring within 1 year after transplantation. In multivariate analyses, we confirmed that PTLD risks were strongly associated (P < .001) with T-cell depletion of the donor marrow, antithymocyte globulin (ATG) use, and unrelated or HLA-mismatched grafts (URD/HLA mismatch). Significant associations were also confirmed for acute and chronic graftversus-host disease. The increased risk associated with URD/HLA-mismatched donors (RR ؍ 3.8) was limited to patients with T-cell depletion or ATG use (P ؍ .004). New findings were elevated risks for age 50 years or older at transplantation (RR ؍ 5.1; P < .001) and second transplantation (RR ؍ 3.5; P < .001). Lower risks were found for T-cell depletion methods that remove both T and B cells (alemtuzumab and elutriation, RR ؍ 3.1; P ؍ .025) compared with other methods (RR ؍ 9.4; P ؍ .005 for difference). The cumulative incidence of PTLDs was low (0.2%) among 21 686 patients with no major risk factors, but increased to 1.1%, 3.6%, and 8.1% with 1, 2, and more than 3 major risk factors, respectively. Our findings identify subgroups of patients who underwent allogeneic HCT at elevated risk of PTLDs for whom prospective monitoring of Epstein-Barr virus activation and early treatment intervention may be particularly beneficial. (Blood. 2009;113: 4992-5001)
Familial Mediterranean fever (FMF) is a recessive disorder characterized by episodes of fever and neutrophil-mediated serosal inflammation. We recently identified the gene causing FMF, designatedMEFV, and found it to be expressed in mature neutrophils, suggesting that it functions as an inflammatory regulator. To facilitate our understanding of the normal function of MEFV, we extended our previous studies. MEFV messenger RNA was detected by reverse transcriptase–polymerase chain reaction in bone marrow leukocytes, with differential expression observed among cells by in situ hybridization. CD34 hematopoietic stem-cell cultures induced toward the granulocytic lineage expressed MEFV at the myelocyte stage, concurrently with lineage commitment. The prepromyelocytic cell line HL60 expressed MEFV only at granulocytic and monocytic differentiation. MEFV was also expressed in the monocytic cell lines U937 and THP-1. Among peripheral blood leukocytes, MEFV expression was detected in neutrophils, eosinophils, and to varying degrees, monocytes. Consistent with the tissue specificity of expression, complete sequencing and analysis of upstream regulatory regions of MEFV revealed homology to myeloid-specific promoters and to more broadly expressed inflammatory promoter elements. In vitro stimulation of monocytes with the proinflammatory agents interferon (IFN) γ, tumor necrosis factor, and lipopolysaccharide induced MEFV expression, whereas the antiinflammatory cytokines interleukin (IL) 4, IL-10, and transforming growth factor β inhibited such expression. Induction by IFN-γ occurred rapidly and was resistant to cycloheximide. IFN- also induced MEFV expression. In granulocytes, MEFV was up-regulated by IFN-γ and the combination of IFN- and colchicine. These results refine understanding of MEFV by placing the gene in the myelomonocytic-specific proinflammatory pathway and identifying it as an IFN-γ immediate early gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.