Polyploidy is widely acknowledged as a major mechanism of adaptation and speciation in plants. The stages in polyploid evolution include frequent fertility bottlenecks and infrequent events such as gametic nonreduction and interspecific hybridization, yet little is known about how these and other factors influence overall rates of polyploid formation. Here we review the literature regarding polyploid origins, and quantify parameter values for each of the steps involved in the principal pathways. In contrast to the common claim that triploids are sterile, our results indicate that the triploid bridge pathway can contribute significantly to autopolyploid formation regardless of the mating system, and to allopolyploid formation in outcrossing taxa. We estimate that the total rate of autotetraploid formation is of the same order as the genic mutation rate (10 −5 ), and that a high frequency of interspecific hybridization (0.2% for selfing taxa, 2.7% for outcrossing taxa) is required for the rate of tetraploid formation via allopolyploidy to equal that by autopolyploidy. We conclude that the rate of autopolyploid formation may often be higher than the rate of allopolyploid formation. Further progress toward understanding polyploid origins requires studies in natural populations that quantify: (a) the frequency of unreduced gametes, (b) the effectiveness of triploid bridge pathways, and (c) the rates of interspecific hybridization.
A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.
Biotic interactions are believed to play a role in the origin and maintenance of species diversity, and multiple hypotheses link the latitudinal diversity gradient to a presumed gradient in the importance of biotic interactions. Here we address whether biotic interactions are more important at low latitudes, finding support for this hypothesis from a wide range of interactions. Some of the best-supported examples are higher herbivory and insect predation in the tropics, and predominantly tropical mutualisms such as cleaning symbioses and ant-plant interactions. For studies that included tropical regions, biotic interactions were never more important at high latitudes. Although our results support the hypothesis that biotic interactions are more important in the tropics, additional research is needed, including latitudinal comparisons of rates of molecular evolution for genes involved in biotic interactions, estimates of gradients in interaction strength, and phylogenetic comparisons of the traits that mediate biotic interactions. 245Annu. Rev. Ecol. Evol. Syst. 2009.40:245-269. Downloaded from www.annualreviews.org by University of Sussex on 10/02/12. For personal use only.
Summary. -The amounts of inbreeding depression upon selling and of heterosis upon outcrossing determine the strength of selection on the selling rate in a population when this evolves polygenically by small steps. Genetic models are constructed which allow inbreeding depression to change with the mean selling rate in a population by incorporating both mutation to recessive and partially dominant lethal and sublethal alleles at many loci and mutation in quantitative characters under stabilizing selection, The models help to explain observations of high inbreeding depression (> 50%) upon selling in primarily outcrossing populations, as well as considerable heterosis upon outcrossing in primarily selling populations. Predominant selling and predominant outcrossing are found to be alternative stable states of the mating system in most plant populations. Which of these stable states a species approaches depends on the history of its population structure and the magnitude of effect of genes influencing the selling rate.
The amounts of inbreeding depression upon selfing and of heterosis upon outcrossing determine the strength of selection on the selfing rate in a population when this evolves polygenically by small steps. Genetic models are constructed which allow inbreeding depression to change with the mean selfing rate in a population by incorporating both mutation to recessive and partially dominant lethal and sublethal alleles at many loci and mutation in quantitative characters under stabilizing selection. The models help to explain observations of high inbreeding depression (> 50%) upon selfing in primarily outcrossing populations, as well as considerable heterosis upon outcrossing in primarily selfing populations. Predominant selfing and predominant outcrossing are found to be alternative stable states of the mating system in most plant populations. Which of these stable states a species approaches depends on the history of its population structure and the magnitude of effect of genes influencing the selfing rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.