Subgenic-resolution oligonucleotide microarrays were used to study global RNA degradation in wild-type Escherichia coli MG1655. RNA chemical half-lives were measured for 1036 open reading frames (ORFs) and for 329 known and predicted operons. The half-life of total mRNA was 6.8 min under the conditions tested. We also observed significant relationships between gene functional assignments and transcript stability. Unexpectedly, transcription of a single operon (tdcABCDEFG) was relatively rifampicin-insensitive and showed significant increases 2.5 min after rifampicin addition. This supports a novel mechanism of transcription for the tdc operon, whose promoter lacks any recognizable binding sites. Probe by probe analysis of all known and predicted operons showed that the 5Ј ends of operons degrade, on average, more quickly than the rest of the transcript, with stability increasing in a 3Ј direction, supporting and further generalizing the current model of a net 5Ј to 3Ј directionality of degradation. Hierarchical clustering analysis of operon degradation patterns revealed that this pattern predominates but is not exclusive. We found a weak but highly significant correlation between the degradation of adjacent operon regions, suggesting that stability is determined by a combination of local and operon-wide stability determinants. The 16 ORF dcw gene cluster, which has a complex promoter structure and a partially characterized degradation pattern, was studied at high resolution, allowing a detailed and integrated description of its abundance and degradation. We discuss the application of subgenic resolution DNA microarray analysis to study global mechanisms of RNA transcription and processing.Gene regulation is a dynamic process which can be controlled by a number of mechanisms as genetic information flows from nucleic acids to proteins. The study of gene regulation in the steady state, while informative, overlooks the underlying dynamics of the processes. Steady-state transcript levels are a result of both RNA synthesis and degradation, and as such, measurements of degradation rates can be used to determine their rates of synthesis (if their steady-state levels are known) as well as reveal regulation which occurs via changes in RNA stability.For the genetic regulatory network of Escherichia coli to be understood and eventually modeled, all means of regulation in use by the cell must be given due attention. RNA degradation in eubacteria was once viewed as a nonspecific, unregulated process. Today it is known to involve multiple degradation pathways, a multisubunit protein complex (the degradosome), and to be an important regulatory mechanism for the expression of some genes (for reviews, see GrunbergManago 1999;Rauhut and Klug 1999;Regnier and Arraiano 2000). A small number of large-scale RNA degradation analyses have recently been reported in budding yeast (Wang et al. 2002), humans (Lam et al. 2001), and E. coli (Bernstein et al. 2002).RNA expression analysis with DNA microarrays has allowed transcription to be st...
We have developed a high-resolution "genome array" for the study of gene expression and regulation in Escherichia coli. This array contains on average one 25-mer oligonucleotide probe per 30 base pairs over the entire genome, with one every 6 bases for the intergenic regions and every 60 bases for the 4,290 open reading frames (ORFs). Twofold concentration differences can be detected at levels as low as 0.2 messenger RNA (mRNA) copies per cell, and differences can be seen over a dynamic range of three orders of magnitude. In rich medium we detected transcripts for 97% and 87% of the ORFs in stationary and log phases, respectively. We found that 1, 529 transcripts were differentially expressed under these conditions. As expected, genes involved in translation were expressed at higher levels in log phase, whereas many genes known to be involved in the starvation response were expressed at higher levels in stationary phase. Many previously unrecognized growth phase-regulated genes were identified, such as a putative receptor (b0836) and a 30S ribosomal protein subunit (S22), both of which are highly upregulated in stationary phase. Transcription of between 3,000 and 4,000 predicted ORFs was observed from the antisense strand, indicating that most of the genome is transcribed at a detectable level. Examples are also presented for high-resolution array analysis of transcript start and stop sites and RNA secondary structure.
Changes in DNA supercoiling are induced by a wide range of environmental stresses in Escherichia coli, but the physiological significance of these responses remains unclear. We now demonstrate that an increase in negative supercoiling is necessary for transcriptional activation of a large subset of osmotic stress-response genes. Using a microarray-based approach, we have characterized supercoiling-dependent gene transcription by expression profiling under conditions of high salt, in conjunction with the microbial antibiotics novobiocin, pefloxacin, and chloramphenicol. Algorithmic clustering and statistical measures for gauging cellular function show that this subset is enriched for genes critical in osmoprotectant transport/synthesis and rpoS-driven stationary phase adaptation. Transcription factor binding site analysis also supports regulation by the global stress factor rpoS. In addition, these studies implicate 60 uncharacterized genes in the osmotic stress regulon, and offer evidence for a broader role for supercoiling in the control of stress-induced transcription.
SMAD6 is a crucial feedback inhibitory regulator of bone morphogenetic protein (BMP)/SMAD signalling. Although little is known regarding the post-transcriptional modification of inhibitory SMADs and the mechanism by which their function is regulated. In this study, using a whole proteomic interaction screen for SMAD6, we identified a large putative E2 ubiquitin-conjugating enzyme UBE2O (E2-230K) as a novel interacting protein of SMAD6. We showed that UBE2O functions as an E2-E3 hybrid to monoubiquitinate SMAD6 at lysine 174 and that the cysteine 885 residue of human UBE2O is necessary for SMAD6 monoubiquitination. Inactivation of the SMAD6 monoubiquitination site specially potentiates the inhibitory ability of SMAD6 against BMP7-induced SMAD1 phosphorylation and transcriptional responses. We also found that UBE2O potentiated BMP7 signalling in a SMAD6-dependent manner. Addressing the molecular mechanism by which UBE2O and monoubiquitinated SMAD6 potentiate BMP7 signalling, we demonstrated that monoubiquitinated SMAD6 impairs the binding affinity of non-modified SMAD6 to the BMP type I receptor. Moreover, UBE2O and SMAD6 cooperated in the regulation of BMP7-induced adipogenesis.
Background: The outbreak of SARS CoV-2 has caused ever-increasing attention and public panic all over the world. Currently, there is no specific treatment against the SARS CoV-2. Therefore, identifying effective antiviral agents to combat the disease is urgently needed. Previous studies found that indomethacin has the ability to inhibit the replication of several unrelated DNA and RNA viruses, including SARS-CoV.Methods: SARS CoV-2 pseudovirus-infected African green monkey kidney VERO E6 cells treated with different concentrations of indomethacin or aspirin at 48 hours post infection (p.i). The level of cell infection was determined by luciferase activity. Anti-coronavirus efficacy in vivo was confirmed by evaluating the time of recovery in canine coronavirus (CCV) infected dogs treated orally with 1mg/kg body weight indomethacin.Results: We found that indomethacin has a directly and potently antiviral activity against the SARS CoV-2 pseudovirus (reduce relative light unit to zero). In CCV-infected dogs, recovery occurred significantly sooner with symptomatic treatment + oral indomethacin (1 mg/kg body weight) daily treatments than with symptomatic treatment + ribavirin (10-15 mg/kg body weight) daily treatments (P =0.0031), but was not significantly different from that with symptomatic treatment + anti-canine coronavirus serum + canine hemoglobin + canine blood immunoglobulin + interferon treatments (P =0.7784). Conclusion:The results identify indomethacin as a potent inhibitor of SARS CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.