Dietary supplementation with pomegranate juice improves isometric strength recovery after unaccustomed eccentric exercise. The purpose of this study was to determine if there is a dose response effect of pomegranate juice supplementation after eccentric exercise isometric strength recovery. Forty-five nonresistance trained, recreationally active men were assigned once-daily pomegranate juice, twice-daily pomegranate juice, or placebo supplementation. On day four of supplementation, 20 min of downhill running and 40 maximal eccentric elbow flexion repetitions were performed. Isometric knee extensor and elbow flexor strength, muscular soreness, and serum myoglobin concentrations were measured prior to exercise and 2, 24, 48, 72, and 96 h after exercise. Throughout the postexercise time period, while isometric knee extensor and elbow flexor strength were similar between once-daily and twice-daily pomegranate juice supplementation groups, isometric strength was significantly higher in pomegranate juice groups than placebo. Knee extensor soreness, elbow flexor soreness, and myoglobin increased in response to exercise but were similar between groups. It is apparent that pomegranate juice supplementation improves strength recovery in leg and arm muscles following eccentric exercise; however, no dose response effect was present. We conclude that once-daily pomegranate juice supplementation is not different from twice-daily supplementation in regards to strength recovery after eccentric exercise.
Highlights Widespread myogenic cell communication in muscle during mechanical overload (MOV) Extracellular vesicles from myogenic progenitors repress Wisp1 in fibrogenic cells Fibrogenic fate and chemokines are influenced by satellite cells early during MOV Prior to fusion, satellite cell communication regulates long-term hypertrophy
How regular physical activity is able to improve health remains poorly understood.The release of factors from skeletal muscle following exercise has been proposed as a possible mechanism mediating such systemic benefits. We describe a mechanism wherein skeletal muscle, in response to a hypertrophic stimulus induced by mechanical overload (MOV), released extracellular vesicles (EVs) containing musclespecific miR-1 that were preferentially taken up by epidydimal white adipose tissue (eWAT). In eWAT, miR-1 promoted adrenergic signaling and lipolysis by targeting Tfap2α, a known repressor of Adrβ3 expression. Inhibiting EV release prevented the MOV-induced increase in eWAT miR-1 abundance and expression of lipolytic genes. Resistance exercise decreased skeletal muscle miR-1 expression with a concomitant increase in plasma EV miR-1 abundance, suggesting a similar mechanism may be operative in humans. Altogether, these findings demonstrate that skeletal muscle promotes metabolic adaptations in adipose tissue in response to MOV via EV-mediated delivery of miR-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.