Background
Though interest in human simple sequence repeats (SSRs) is increasing, little is known about the exact distributional features of numerous SSRs in human Y-DNA at chromosomal level. Herein, totally 540 maps were established, which could clearly display SSR landscape in every bin of 1 k base pairs (Kbp) along the sequenced part of human reference Y-DNA (NC_000024.10), by our developed differential method for improving the existing method to reveal SSR distributional characteristics in large genomic sequences.
Results
The maps show that SSRs accumulate significantly with forming density peaks in at least 2040 bins of 1 Kbp, which involve different coding, noncoding and intergenic regions of the Y-DNA, and 10 especially high density peaks were reported to associate with biological significances, suggesting that the other hundreds of especially high density peaks might also be biologically significant and worth further analyzing. In contrast, the maps also show that SSRs are extremely sparse in at least 207 bins of 1 Kbp, including many noncoding and intergenic regions of the Y-DNA, which is inconsistent with the widely accepted view that SSRs are mostly rich in these regions, and these sparse distributions are possibly due to powerfully regional selection. Additionally, many regions harbor SSR clusters with same or similar motif in the Y-DNA.
Conclusions
These 540 maps may provide the important information of clearly position-related SSR distributional features along the human reference Y-DNA for better understanding the genome structures of the Y-DNA. This study may contribute to further exploring the biological significance and distribution law of the huge numbers of SSRs in human Y-DNA.
Background
The ubiquitous presence of short tandem repeats (STRs) in virtually all genomes implicates their functional relevance, while a widely-accepted definition of STR is yet to be established. Previous studies majorly focus on relatively longer STRs, while shorter repeats were generally excluded. Herein, we have adopted a more generous criteria to define shorter repeats, which has led to the definition of a much larger number of STRs that lack prior analysis. Using this definition, we analyzed the short repeats in 55 randomly selected segments in 55 randomly selected genomic sequences from a fairly wide range of species covering animals, plants, fungi, protozoa, bacteria, archaea and viruses.
Results
Our analysis reveals a high percentage of short repeats in all 55 randomly selected segments, indicating that the universal presence of high-content short repeats could be a common characteristic of genomes across all biological kingdoms. Therefore, it is reasonable to assume a mechanism for continuous production of repeats that can make the replicating process relatively semi-conservative. We have proposed a folded replication slippage model that considers the geometric space of nucleotides and hydrogen bond stability to explain the mechanism more explicitly, with improving the existing straight-line slippage model. The folded slippage model can explain the expansion and contraction of mono- to hexa- nucleotide repeats with proper folding angles. Analysis of external forces in the folding template strands also suggests that expansion exists more commonly than contraction in the short tandem repeats.
Conclusion
The folded replication slippage model provides a reasonable explanation for the continuous occurrences of simple sequence repeats in genomes. This model also contributes to the explanation of STR-to-genome evolution and is an alternative model that complements semi-conservative replication.
a b s t r a c tMicrosatellites (SSRs) are ubiquitous in coding and non-coding regions of the Ebolavirus genomes. We synthetically analyzed the microsatellites in whole-genome and terminal regions of 219 Ebolavirus genomes from five species. The Ebolavirus sequences were observed with small intraspecies variations and large interspecific variations, especially in the terminal non-coding regions. Only five conserved microsatellites were detected in the complete genomes, and four of them which well base-paired to help forming conserved stem-loop structures mainly appeared in the terminal non-coding regions. These results suggest that the conserved microsatellites may be evolutionary selected to form conserved secondary structures in 5 0 , 3 0 terminals of Ebolavirus genomes. It may help to understand the biological significance of microsatellites in Ebolavirus and also other virus genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.