Visual perception is an important part of human life. In the context of facial recognition, it allows us to distinguish between emotions and important facial features that distinguish one person from another. However, subjects suffering from memory loss face significant facial processing problems. If the perception of facial features is affected by memory impairment, then it is possible to classify visual stimuli using brain activity data from the visual processing regions of the brain. This study differentiates the aspects of familiarity and emotion by the inversion effect of the face and uses convolutional neural network (CNN) models (EEGNet, EEGNet SSVEP (steady-state visual evoked potentials), and DeepConvNet) to learn discriminative features from raw electroencephalography (EEG) signals. Due to the limited number of available EEG data samples, Generative Adversarial Networks (GAN) and Variational Autoencoders (VAE) are introduced to generate synthetic EEG signals. The generated data are used to pretrain the models, and the learned weights are initialized to train them on the real EEG data. We investigate minor facial characteristics in brain signals and the ability of deep CNN models to learn them. The effect of face inversion was studied, and it was observed that the N170 component has a considerable and sustained delay. As a result, emotional and familiarity stimuli were divided into two categories based on the posture of the face. The categories of upright and inverted stimuli have the smallest incidences of confusion. The model’s ability to learn the face-inversion effect is demonstrated once more.
Vehicle detection and classification is an important part of an intelligent transportation surveillance system. Although car detection is a trivial task for deep learning models, studies have shown that when vehicles are visible from different angles, more research is relevant for brand classification. Furthermore, each year, more than 30 new car models are released to the United States market alone, implying that the model needs to be updated with new classes, and the task becomes more complex over time. As a result, a transfer learning approach has been investigated that allows the retraining of a model with a small amount of data. This study proposes an efficient solution to develop an updatable local vehicle brand monitoring system. The proposed framework includes the dataset preparation, object detection, and a view-independent make classification model that has been tested using two efficient deep learning architectures, EfficientNetV2 and MobileNetV2. The model was trained on the dominant car brands in Lithuania and achieved 81.39 % accuracy in classifying 19 classes, using 400 to 500 images per class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.