Stroke results in the disruption of tissue architecture and is the third leading cause of death in the United States1. Transplanting scaffolds containing stem cells into the injured areas of the brain has been proposed as a treatment strategy2, and carbon nanotubes show promise in this regard, with positive outcomes when used as scaffolds in neural cells3,4 and brain tissues5. Here, we show that pretreating rats with amine-modified single-walled carbon nanotubes can protect neurons and enhance the recovery of behavioural functions in rats with induced stroke. Treated rats showed less tissue damage than controls and took longer to fall from a rotating rod, suggesting better motor functions after injury. Low levels of apoptotic, angiogenic and inflammation markers indicated that aminemodified single-walled carbon nanotubes protected the brains of treated rats from ischaemic injury.
Change in the expression of body fluid proteins is caused by many diseases or environmental disturbances. The changes in tear proteins are also associated with various pathological eye conditions. Especially, chronic blepharitis is one of the most common conditions seen in the ophthalmologist's office. However, there are no specific clinical diagnostic tests for blepharitis, and it is difficult to treat effectively. Therefore, the aim of this study was to screen prognostic or diagnostic marker tear proteins for blepharitis and investigate pathogenesis of this disease using proteomics techniques. The tear proteins expressed in patients suffering from blepharitis (patient, n=19) and healthy volunteers (control, n=27) were analyzed using the two-dimensional electrophoresis (2-DE) technique. The differentially expressed proteins in patients were identified with ESI-Q-TOF (electrospray-quadrupole-time-of-flight) mass spectrometry and confirmed with western blotting. Nine proteins in patient were down regulated about 50% compared to those of the control: serum albumin precursor, alpha-1 antitrypsin, lacritin precursor, lysozyme, Ig-kappa chain VIII, prolactin inducible protein (PIP/GCDFP-15), cystatin-SA III, pyruvate kinase, and an unnamed protein. The use of the two-dimensional eletrophoretic technique could give more insight into the disease-related protein expression changes in tear fluids. Our findings reveal that the composition of tear proteins in blepharitis patients is different from that of healthy subjects and may provide further insights into the pathogenesis of blepharitis.
Alzheimer's disease (AD) is characterized by the deposition of aggregated beta-amyloid (Aβ), which triggers a cellular stress response called the unfolded protein response (UPR). The UPR signaling pathway is a cellular defense system for dealing with the accumulation of misfolded proteins but switches to apoptosis when endoplasmic reticulum (ER) stress is prolonged. ER stress is involved in neurodegenerative diseases including AD, but the molecular mechanisms of ER stress-mediated Aβ neurotoxicity still remain unknown. Here, we show that treatment of Aβ triggers the UPR in the SK-N-SH human neuroblastoma cells. Aβ mediated UPR pathway accompanies the activation of protective pathways such as Grp78/Bip and PERK-eIF2α pathway, as well as the apoptotic pathways of the UPR such as CHOP and caspase-4. Knockdown of PERK enhances Aβ neurotoxicity through reducing the activation of eIF2α and Grp8/Bip in neurons. Salubrinal, an activator of the eIF2α pathway, significantly increased the Grp78/Bip ER chaperone resulted in attenuating caspase-4 dependent apoptosis in Aβ treated neurons. These results indicate that PERK-eIF2α pathway is a potential target for therapeutic applications in neurodegenerative diseases including AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.