The pretreatment of cultured cortical neurons with neurotrophic factors markedly potentiates the cytotoxicity induced by low concentrations of Zn(2+) or excitotoxins. In the current study, we investigated the mechanism underlying the insulin-like growth factor-I (IGF-I)-induced Zn(2+) toxicity potentiation. The pretreatment of primary cortical cultures for more than 12 h with 100 ng/ml of IGF-I increased the cytotoxicity induced by 80 microM Zn(2+) by more than 2-fold. The IGF-I-enhanced cell death was blocked by the COX-2-specific inhibitors N-[2-(cyclohexyloxyl)-4-nitrophenyl]-methane sulfonamide (NS-398; 10-100 microM) and 1-[(4-methylsulfonyl)phenyl]-3-trifluoro-methyl-5-[(4-fluoro)phenyl]pyrazole (SC58125; 10 microM) and by the antioxidant trolox (30 microM). In addition, it was observed that COX-2 expression was increased 12 to 24 h after IGF-I treatment. Preincubation of cortical cultures with IGF-I increased arachidonic acid (AA)-induced cytotoxicity, and AA increased Zn(2+) toxicity, which suggested the involvement of COX activity in these cellular responses. Moreover, enhanced COX-2 activity led to a decrease in the cell's reducing power, as indicated by a gradual depletion of intracellular GSH. Cortical neurons pretreated with IGF-I and then Zn(2+) showed consistently enhanced reactive oxygen species production, which was repressed by NS-398 and SC58125. Cortical neurons treated with Zn(2+) and then AA displayed the increased ROS production, which was also suppressed by NS-398 and SC58125. These results suggest that COX-2 is an endogenous factor responsible for the IGF-I-induced potentiation of Zn(2+) toxicity and that enhanced COX-2 activity leads to a decrease in the cell's reducing power and an increase in ROS accumulation in primary cortical cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.